THERMAL SCIENCE
International Scientific Journal
Thermal Science - Online First
online first only
An odd entire-function solution for one-dimensional diffusion equation in theory of modular form
ABSTRACT
This article addresses a new odd entire function of order one structured by the Fourier sine integral, which is the solution of the one-dimensional diffusion equation in theory of modular form.
KEYWORDS
PAPER SUBMITTED: 2022-11-05
PAPER REVISED: 2022-11-26
PAPER ACCEPTED: 2022-12-02
PUBLISHED ONLINE: 2023-01-21
- Ramanujan, S., On Certain Arithmetical Functions, Transactions of the Cambridge Philosophical Society, 22(1916), 9, pp.159-184
- Sarnak, P., Some Applications of Modular Forms, Vol. 99, Cambridge University Press, Cambridge, UK, 1990
- Mordell, L. J., On Mr Ramanujan's Empirical Expansions of Modular Functions, Proceedings of the Cambridge Philosophical Society, 19(1917), June, pp.117-124
- Rankin, R. A., Contributions to the Theory of Ramanujan's Function τ( n) and Similar Arithmetical Functions, Mathematical Proceedings of the Cambridge Philosophical Society, 35(1939), 03, pp.351-356
- Yang, X. J., On the Riemann-Hardy hypothesis for the Ramanujan zeta function, doi.org/10.48550/arXiv.1811.02418
- Cannon, J. R., Esteva, S. P., and Van Der Hoek, J., A Galerkin Procedure for the Diffusion Equation Subject to the Specification of Mass, SIAM Journal on Numerical Analysis, 24(1987), 3, pp.499-515
- Boas, R. P., Entire Functions, Academic Press, New York, USA, 1954