THERMAL SCIENCE
International Scientific Journal
TRANSIENT HEAT CONDUCTION WITH VARIABLE THERMOPHYSICAL PROPERTIES POWER-LAW TEMPERATURE-DEPENENT HEAT CAPACITY AND THERMAL CONDUCTIVITY
ABSTRACT
Transient heat conduction in semi-infinite medium with a power-law temperature-dependent thermophysical properties has been solved by Double integral-balance method. Correct formulation of the energy equation with temperature-dependent heat capacity is discussed and analyzed.
KEYWORDS
PAPER SUBMITTED: 2022-05-17
PAPER REVISED: 2022-05-24
PAPER ACCEPTED: 2022-05-27
PUBLISHED ONLINE: 2023-04-08
- Koh, J. C. V., The 1-D Heat Conduction with Arbitrary Heating Rate and Variable Coefficients, Journal Aerospace Sci., 28 (1961), 12, pp. 989-990
- Olson, U., Application of a Perturbation Method to Heat Flow Analysis in Materials Having Temperature-Dependent Properties, AIAA J., 8 (1970 ), 10, pp. 1902-1903
- Gonzalez-Fernandez, C. F., et al., Digital Simulation of Transient Heat Conduction with Polynomial Variable Thermal Conductivity and Specific Heat, Comp. Phys. Commun., 111 (1998), 1-3, pp. 53-58
- Lin, S. H., Transient Heat Conduction in a Composite Slab with Variable Thermal Conductivity, Int. J. Num. Meth. Eng., 14 (1979), 11, pp. 1726-1731
- Becker, M., Non-Linear Transient Heat Conduction Using Similarity Groups, Journal Heat Transfer, 122 (2000), 1, pp. 33-39
- Mastanaiah, K., Muthunayagam, A. E., Transeint Conduction in a Slab with Variable Thermal Conductivity, AIAA J., 13 (1954), 7, pp. 954-956
- Aziz, A., Benzies, Y., Application of Perturbation Techniques to Heat Transfer Problems with Variable Thermal Properties, Int. J. Heat Mass Transfer, 19 (1976), 3, pp. 271-296
- Chen, H. T., Lin, J. Y., Hybrid Laplace Transform Technique for Non-Linear Transient Thermal Problem, Int. J. Heat Mass Transfer, 34 (1991), 4-5, pp. 1301-1308
- Cardona, A., Idelsohn, S., Solution of Non-Linear Thermal Transient Problems by a Reduction Method, Int. J. Num. Meth.Eng., 23 (1986), 6, pp. 1023-1042
- Gonzalez-Fernandez, C. F., et al., Computer Simulations of a Square Scheme with Reversible and Irreversible Charge Transfer by Network Method, Journal Electroanal. Chem., 396 (1995), 1-2, pp. 39-44
- Vargas, P., Lopez de Ramos Aura, L., Influence of Thermal Properties Accuracy on Transient Conduction Models, Proceedings, 14th Int., Heat Transfer Conf., IHTC14, Washington, DC, USA, Paper No. IHTC14-23129, 2010, Vol. 4, pp. 105-113
- Kumar, V., et al., Exploration of Transient Transfer through Moving Plate with Exponentially Temperature-Dependent Thermal Properties, Waves in Random and Complex Media, On-line first, doi.org/10.1080/17455030.2022.2056256, 2022
- Mahan, G. D., Non-Local Theory of Thermal Conductivity, Phys. Rev. B, 38 (1963), 3, pp. 1963-1969
- Zhou, Y., et al., Analytical Solution for Non-Linear Infinite Line Source Problem with Temperature-Dependent Thermal Properties, Heat Mass Transfer, 51 (2015), 1, pp. 143-152
- Popovich, V. S., Makhorkin, I. M., The Solution of Heat-Conduction Problems for Thermosensitive Bodies, Journal Math. Sci., 88 (1998), 3,pp. 352-359
- Yang, C., Ching, A., A Linear Inverse Model for the Temperature-Dependent Thermal Conductivity Determination in 1-D Problems, Appl. Math. Model., 22 (1998),1-2, pp. 1-9
- Chen, H. T., Lin, J. Y., Simultaneous Estimations of Temperature-Dependent Thermal Conductivity and Heat Capacity, Int. J. Heat Mass Transfer., 41 (1998), 14, pp. 2237-2244
- Huang, C. H., Yan, J. Y., An Inverse Problem in Simultaneously Measuring Temperature-Dependent Thermal Conductivity and Heat Capacity, Int. J. Heat Mass Transfer., 38 (1995), 18, pp. 3433-3441
- Sawaf, B, Ozisik, M. N., An Inverse Analysis to Estimate Linearly Temperature Dependent Thermal Conductivity Components and Heat Capacity in an Orthotropic Medium, Int. J. Heat Mass Transfer., 38 (1995), 16, pp. 3005-3010
- Wang, X. M., et al., Estimation of Temperature-Dependent Thermal Conductivity and Specific Heat Capacity for Charring Ablators, Int. J. Heat Mass Transfer., 129 (2019), Feb., pp. 894-902
- Fabre A., Hristov J., On the Integral-Balance Approach to the Transient Heat Conduction with Linearly Temperature-Dependent Thermal Diffusivity, Heat Mass Transfer, 53 (2017),1, pp. 177-204
- Goodman, T. R, The Heat Balance Integral and Its Application Problems Involving a Change of Phase, Transactions of ASME, 80 (1958), 1-2, pp. 335-342
- Hristov, J., The Heat-Balance Integral Method by a Parabolic Profile with Unspecified Exponent: Analysis and Benchmark Exercises, Thermal Science, 13 (2009), 2, pp. 27-48
- Hristov J., Integral Solutions to Transient Non-Linear Heat (Mass) Diffusion with a Power-Law Diffusivity: A Semi-Infinite Medium with Fixed Boundary Conditions, Heat Mass Transfer, 52 (2016), 3, pp. 635-655
- Hristov, J., Double Integral-Balance Method to the Fractional Subdiffusion Equation: Approximate Solutions, Optimization Problems to be Resolved and Numerical Simulations, Journal Vibration and Control, 23 (2017), 7, pp. 2795-2818
- Mitchel, S. L., Myers, T. G., Application of Standard and Refined Heat Balance Integral Methods to 1-D Stefan Problems, SIAM Rev., 52 (2010), 1, pp. 57-86