THERMAL SCIENCE

International Scientific Journal

Authors of this Paper

External Links

TRANSIENT HEAT CONDUCTION WITH VARIABLE THERMOPHYSICAL PROPERTIES POWER-LAW TEMPERATURE-DEPENENT HEAT CAPACITY AND THERMAL CONDUCTIVITY

ABSTRACT
Transient heat conduction in semi-infinite medium with a power-law temperature-dependent thermophysical properties has been solved by Double integral-balance method. Correct formulation of the energy equation with temperature-dependent heat capacity is discussed and analyzed.
KEYWORDS
PAPER SUBMITTED: 2022-05-17
PAPER REVISED: 2022-05-24
PAPER ACCEPTED: 2022-05-27
PUBLISHED ONLINE: 2023-04-08
DOI REFERENCE: https://doi.org/10.2298/TSCI23S1411H
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2023, VOLUME 27, ISSUE Special issue 1, PAGES [411 - 422]
REFERENCES
  1. Koh, J. C. V., The 1-D Heat Conduction with Arbitrary Heating Rate and Variable Coefficients, Journal Aerospace Sci., 28 (1961), 12, pp. 989-990
  2. Olson, U., Application of a Perturbation Method to Heat Flow Analysis in Materials Having Temperature-Dependent Properties, AIAA J., 8 (1970 ), 10, pp. 1902-1903
  3. Gonzalez-Fernandez, C. F., et al., Digital Simulation of Transient Heat Conduction with Polynomial Variable Thermal Conductivity and Specific Heat, Comp. Phys. Commun., 111 (1998), 1-3, pp. 53-58
  4. Lin, S. H., Transient Heat Conduction in a Composite Slab with Variable Thermal Conductivity, Int. J. Num. Meth. Eng., 14 (1979), 11, pp. 1726-1731
  5. Becker, M., Non-Linear Transient Heat Conduction Using Similarity Groups, Journal Heat Transfer, 122 (2000), 1, pp. 33-39
  6. Mastanaiah, K., Muthunayagam, A. E., Transeint Conduction in a Slab with Variable Thermal Conductivity, AIAA J., 13 (1954), 7, pp. 954-956
  7. Aziz, A., Benzies, Y., Application of Perturbation Techniques to Heat Transfer Problems with Variable Thermal Properties, Int. J. Heat Mass Transfer, 19 (1976), 3, pp. 271-296
  8. Chen, H. T., Lin, J. Y., Hybrid Laplace Transform Technique for Non-Linear Transient Thermal Problem, Int. J. Heat Mass Transfer, 34 (1991), 4-5, pp. 1301-1308
  9. Cardona, A., Idelsohn, S., Solution of Non-Linear Thermal Transient Problems by a Reduction Method, Int. J. Num. Meth.Eng., 23 (1986), 6, pp. 1023-1042
  10. Gonzalez-Fernandez, C. F., et al., Computer Simulations of a Square Scheme with Reversible and Irreversible Charge Transfer by Network Method, Journal Electroanal. Chem., 396 (1995), 1-2, pp. 39-44
  11. Vargas, P., Lopez de Ramos Aura, L., Influence of Thermal Properties Accuracy on Transient Conduction Models, Proceedings, 14th Int., Heat Transfer Conf., IHTC14, Washington, DC, USA, Paper No. IHTC14-23129, 2010, Vol. 4, pp. 105-113
  12. Kumar, V., et al., Exploration of Transient Transfer through Moving Plate with Exponentially Temperature-Dependent Thermal Properties, Waves in Random and Complex Media, On-line first, doi.org/10.1080/17455030.2022.2056256, 2022
  13. Mahan, G. D., Non-Local Theory of Thermal Conductivity, Phys. Rev. B, 38 (1963), 3, pp. 1963-1969
  14. Zhou, Y., et al., Analytical Solution for Non-Linear Infinite Line Source Problem with Temperature-Dependent Thermal Properties, Heat Mass Transfer, 51 (2015), 1, pp. 143-152
  15. Popovich, V. S., Makhorkin, I. M., The Solution of Heat-Conduction Problems for Thermosensitive Bodies, Journal Math. Sci., 88 (1998), 3,pp. 352-359
  16. Yang, C., Ching, A., A Linear Inverse Model for the Temperature-Dependent Thermal Conductivity Determination in 1-D Problems, Appl. Math. Model., 22 (1998),1-2, pp. 1-9
  17. Chen, H. T., Lin, J. Y., Simultaneous Estimations of Temperature-Dependent Thermal Conductivity and Heat Capacity, Int. J. Heat Mass Transfer., 41 (1998), 14, pp. 2237-2244
  18. Huang, C. H., Yan, J. Y., An Inverse Problem in Simultaneously Measuring Temperature-Dependent Thermal Conductivity and Heat Capacity, Int. J. Heat Mass Transfer., 38 (1995), 18, pp. 3433-3441
  19. Sawaf, B, Ozisik, M. N., An Inverse Analysis to Estimate Linearly Temperature Dependent Thermal Conductivity Components and Heat Capacity in an Orthotropic Medium, Int. J. Heat Mass Transfer., 38 (1995), 16, pp. 3005-3010
  20. Wang, X. M., et al., Estimation of Temperature-Dependent Thermal Conductivity and Specific Heat Capacity for Charring Ablators, Int. J. Heat Mass Transfer., 129 (2019), Feb., pp. 894-902
  21. Fabre A., Hristov J., On the Integral-Balance Approach to the Transient Heat Conduction with Linearly Temperature-Dependent Thermal Diffusivity, Heat Mass Transfer, 53 (2017),1, pp. 177-204
  22. Goodman, T. R, The Heat Balance Integral and Its Application Problems Involving a Change of Phase, Transactions of ASME, 80 (1958), 1-2, pp. 335-342
  23. Hristov, J., The Heat-Balance Integral Method by a Parabolic Profile with Unspecified Exponent: Analysis and Benchmark Exercises, Thermal Science, 13 (2009), 2, pp. 27-48
  24. Hristov J., Integral Solutions to Transient Non-Linear Heat (Mass) Diffusion with a Power-Law Diffusivity: A Semi-Infinite Medium with Fixed Boundary Conditions, Heat Mass Transfer, 52 (2016), 3, pp. 635-655
  25. Hristov, J., Double Integral-Balance Method to the Fractional Subdiffusion Equation: Approximate Solutions, Optimization Problems to be Resolved and Numerical Simulations, Journal Vibration and Control, 23 (2017), 7, pp. 2795-2818
  26. Mitchel, S. L., Myers, T. G., Application of Standard and Refined Heat Balance Integral Methods to 1-D Stefan Problems, SIAM Rev., 52 (2010), 1, pp. 57-86

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence