THERMAL SCIENCE
International Scientific Journal
LOCAL MESHLESS COLLOCATION SCHEME FOR NUMERICAL SIMULATION OF SPACE FRACTIONAL PDE
ABSTRACT
In this work, numerical solution of multi term space fractional PDE is calculated by using radial basis functions. The fractional derivatives of radial basis functions are evaluated by Caputo and Riemann-Liouville definitions. Local radial basis functions are applied to get stable and accurate solution the problem. Accuracy of the method is assessed by using double mesh procedure. Numerical solutions are presented for different fractional orders to show the effect of introducing fractionality.
KEYWORDS
PAPER SUBMITTED: 2022-02-01
PAPER REVISED: 2022-03-04
PAPER ACCEPTED: 2022-03-14
PUBLISHED ONLINE: 2023-04-08
- Podlubny, I., Fractional Differential Equations, Academic Press, New York, USA, 1999
- Metzler, R., Klafter, J., The Random Walk's Guide to Anomalous Diffusion: A Fractional Dynamics Approach, Phys. Rep., 339 (2000), 1, pp. 1-77
- Zaslavsky, G. M., Chaos, Fractional Kinetics, and Anomalous Transport, Phys. Rep., 371 (2002), 6, pp. 461-580
- Meerschaert, M. M., Tadjeran, C., Finite Difference Approximations for Two-Sided Space-Fractional Partial Differential Equations, Appl. Numer. Math., 56 (2006), 1, pp. 80-90
- Tian, W. Y., et al., A Class of Second Order Difference Approximations for Solving Space Fractional Diffusion Equations, Math. Comput., 84 (2015), 294, pp. 1703-1727
- Ding, H. F., General Pade Approximation Method for Time-Space Fractional Diffusion Equation, Journal Comput. Appl. Math., 299 (2016), C, pp. 221-228
- Liu, Q., et al., A Meshless Method Based on Point Interpolation Method (PIM) for the Space Fractional Diffusion Equation, Appl. Math. Comput., 256 (2015), Apr., pp. 930-938
- Xu, Q. W., Hesthaven, J. S., Discontinuous Galerkin Method for Fractional Convection-Diffusion Equations, SIAM J. Numer. Anal., 52 (2014), 1, pp. 405-423
- Ervin, V. J., Roop, J. P., Variational Formulation for the Stationary Fractional Advection Dispersion Equation, Numer. Methods Partial Differ. Equ., 22 (2006), 3, pp. 558-576
- Zhang, H., et al., Galerkin Finite Element Approximation of Symmetric Space-Fractional Partial Differential Equations, Appl. Math. Comput., 217 (2010), 6, pp. 2534-2545
- Hejazi, H., Stability and Convergence of a Finite Volume Method for the Space Fractional Advection-Dispersion Equation, Journal Comput. Appl. Math., 255 (2014), Jan., pp. 684-697
- Pang, G. F., et al., Space-Fractional Advection-Dispersion Equations by the Kansa Method, Journal Comput. Phys., 293 (2015), July, pp. 280-296.
- Sousa, E., Numerical Approximations for Fractional Diffusion Equations Via Splines, Comput. Math. Appl., 62 (2011), 3, pp. 938-944
- Tian, W. Y., et al., Polynomial Spectral Collocation Method for Space Fractional Advection-Diffusion Equation, Numer. Methods Partial Differ. Equ., 30 (2014), 2, pp. 280-296
- Zayernouri, M., Karniadakis, G. E., Fractional Spectral Collocation Methods for Linear and Non-Linear Variable Order FPDE, Journal Comput. Phys., 293 (2015), July, pp. 312-338
- Tadjeran, C., et al., A Second-Order Accurate Numerical Approximation for the Fractional Diffusion Equation, Journal Comput. Phys., 213 (2006), 1, pp. 205-213
- Zhou, H., et al., Quasi-Compact Finite Difference Schemes for Space Fractional Diffusion Equations, Journal Sci. Comput., 56 (2013), Nov., pp. 45-66
- Gu, Y., et al., An Advanced Meshless Method for Time Fractional Diffusion Equation, Int. J. Comput. Methods, 8 (2011), 4, pp. 653-665
- Gu, Y. T., An Advanced Implicit Meshless Approach for the Non-Linear Anomalous Subdiffusion Equation, Comput. Model. Eng. Sci., 56 (2010), 3, pp. 303-333
- Liu, Q., An Implicit RBF Meshless Approach for Time Fractional Diffusion Equations, Comput. Mech. 48 (2011), Feb., pp. 1-12
- Zhuang, P., et al., Time-Dependent Fractional Advection-Diffusion Equations by an Implicit MLS Meshless Method, Int. J. Numer. Methods Engg., 88 (2011), 13, pp. 1346-1362
- Mohebbi, A., et al., The Use of a Meshless Technique Based on Collocation and Radial Basis Functions for Solving the Time Fractional Non-Linear Schrodinger equation Arising in Quantum Mechanics, Engg. Anal. Bound. Elem., 37 (2013), 2, pp. 475-485
- Liu, Q., et al., A RBF Meshless Approach for Modelling a Fractal Mobile/Immobile Transport Model, Appl. Math. Comput., 226 (2014), Jan., pp. 336-347
- Yang, Q., et al., Numerical Methods for Fractional Partial Differential Equations with Riesz Space Fractional Derivatives, Appl. Math. Model., 34 (2010), 1, pp. 200-218
- Maryam, M., Schaback, R., On the Fractional Derivatives of Radial Basis Functions, On-line first, arxiv.org/abs/1612.07563, 2016