THERMAL SCIENCE

International Scientific Journal

LOCAL MESHLESS COLLOCATION SCHEME FOR NUMERICAL SIMULATION OF SPACE FRACTIONAL PDE

ABSTRACT
In this work, numerical solution of multi term space fractional PDE is calculated by using radial basis functions. The fractional derivatives of radial basis functions are evaluated by Caputo and Riemann-Liouville definitions. Local radial basis functions are applied to get stable and accurate solution the problem. Accuracy of the method is assessed by using double mesh procedure. Numerical solutions are presented for different fractional orders to show the effect of introducing fractionality.
KEYWORDS
PAPER SUBMITTED: 2022-02-01
PAPER REVISED: 2022-03-04
PAPER ACCEPTED: 2022-03-14
PUBLISHED ONLINE: 2023-04-08
DOI REFERENCE: https://doi.org/10.2298/TSCI23S1101S
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2023, VOLUME 27, ISSUE Special issue 1, PAGES [101 - 109]
REFERENCES
  1. Podlubny, I., Fractional Differential Equations, Academic Press, New York, USA, 1999
  2. Metzler, R., Klafter, J., The Random Walk's Guide to Anomalous Diffusion: A Fractional Dynamics Approach, Phys. Rep., 339 (2000), 1, pp. 1-77
  3. Zaslavsky, G. M., Chaos, Fractional Kinetics, and Anomalous Transport, Phys. Rep., 371 (2002), 6, pp. 461-580
  4. Meerschaert, M. M., Tadjeran, C., Finite Difference Approximations for Two-Sided Space-Fractional Partial Differential Equations, Appl. Numer. Math., 56 (2006), 1, pp. 80-90
  5. Tian, W. Y., et al., A Class of Second Order Difference Approximations for Solving Space Fractional Diffusion Equations, Math. Comput., 84 (2015), 294, pp. 1703-1727
  6. Ding, H. F., General Pade Approximation Method for Time-Space Fractional Diffusion Equation, Journal Comput. Appl. Math., 299 (2016), C, pp. 221-228
  7. Liu, Q., et al., A Meshless Method Based on Point Interpolation Method (PIM) for the Space Fractional Diffusion Equation, Appl. Math. Comput., 256 (2015), Apr., pp. 930-938
  8. Xu, Q. W., Hesthaven, J. S., Discontinuous Galerkin Method for Fractional Convection-Diffusion Equations, SIAM J. Numer. Anal., 52 (2014), 1, pp. 405-423
  9. Ervin, V. J., Roop, J. P., Variational Formulation for the Stationary Fractional Advection Dispersion Equation, Numer. Methods Partial Differ. Equ., 22 (2006), 3, pp. 558-576
  10. Zhang, H., et al., Galerkin Finite Element Approximation of Symmetric Space-Fractional Partial Differential Equations, Appl. Math. Comput., 217 (2010), 6, pp. 2534-2545
  11. Hejazi, H., Stability and Convergence of a Finite Volume Method for the Space Fractional Advection-Dispersion Equation, Journal Comput. Appl. Math., 255 (2014), Jan., pp. 684-697
  12. Pang, G. F., et al., Space-Fractional Advection-Dispersion Equations by the Kansa Method, Journal Comput. Phys., 293 (2015), July, pp. 280-296.
  13. Sousa, E., Numerical Approximations for Fractional Diffusion Equations Via Splines, Comput. Math. Appl., 62 (2011), 3, pp. 938-944
  14. Tian, W. Y., et al., Polynomial Spectral Collocation Method for Space Fractional Advection-Diffusion Equation, Numer. Methods Partial Differ. Equ., 30 (2014), 2, pp. 280-296
  15. Zayernouri, M., Karniadakis, G. E., Fractional Spectral Collocation Methods for Linear and Non-Linear Variable Order FPDE, Journal Comput. Phys., 293 (2015), July, pp. 312-338
  16. Tadjeran, C., et al., A Second-Order Accurate Numerical Approximation for the Fractional Diffusion Equation, Journal Comput. Phys., 213 (2006), 1, pp. 205-213
  17. Zhou, H., et al., Quasi-Compact Finite Difference Schemes for Space Fractional Diffusion Equations, Journal Sci. Comput., 56 (2013), Nov., pp. 45-66
  18. Gu, Y., et al., An Advanced Meshless Method for Time Fractional Diffusion Equation, Int. J. Comput. Methods, 8 (2011), 4, pp. 653-665
  19. Gu, Y. T., An Advanced Implicit Meshless Approach for the Non-Linear Anomalous Subdiffusion Equation, Comput. Model. Eng. Sci., 56 (2010), 3, pp. 303-333
  20. Liu, Q., An Implicit RBF Meshless Approach for Time Fractional Diffusion Equations, Comput. Mech. 48 (2011), Feb., pp. 1-12
  21. Zhuang, P., et al., Time-Dependent Fractional Advection-Diffusion Equations by an Implicit MLS Meshless Method, Int. J. Numer. Methods Engg., 88 (2011), 13, pp. 1346-1362
  22. Mohebbi, A., et al., The Use of a Meshless Technique Based on Collocation and Radial Basis Functions for Solving the Time Fractional Non-Linear Schrodinger equation Arising in Quantum Mechanics, Engg. Anal. Bound. Elem., 37 (2013), 2, pp. 475-485
  23. Liu, Q., et al., A RBF Meshless Approach for Modelling a Fractal Mobile/Immobile Transport Model, Appl. Math. Comput., 226 (2014), Jan., pp. 336-347
  24. Yang, Q., et al., Numerical Methods for Fractional Partial Differential Equations with Riesz Space Fractional Derivatives, Appl. Math. Model., 34 (2010), 1, pp. 200-218
  25. Maryam, M., Schaback, R., On the Fractional Derivatives of Radial Basis Functions, On-line first, arxiv.org/abs/1612.07563, 2016

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence