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In this work, numerical solution of multi term space fractional PDE is calculated 
by using radial basis functions. The fractional derivatives of radial basis functions 
are evaluated by Caputo and Riemann-Liouville definitions. Local radial basis 
functions are applied to get stable and accurate solution the problem. Accuracy 
of the method is assessed by using double mesh procedure. Numerical solutions 
are presented for different fractional orders to show the effect of introducing frac-
tionality. 
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Introduction

The fractional-order models are considered to be more accurate than the integer-order 
models [1], which is the most important advantage of fractional-order models. This is because 
fractional PDE take into account the fact that many physical phenomena are non-local, meaning 
that they cannot be accurately described by methods that only consider local interactions. Space 
fractional PDE (SFPDE) have the potential to revolutionize the field of mathematics and its ap-
plications. They have attracted much attention from researchers in many fields such as physics, 
engineering, and applied mathematics.

The SFPDE can be used to model a variety of engineering problems. For example, 
they can be used to model diffusion in porous media, heat transfer in heterogeneous materials, 
wave propagation in disordered media, anomalous transport, fluid-flow in fractured rocks, he-
reditary elasticity, and chaotic dynamics [2, 3]. The SFPDE are often used in economics and 
finance to model certain phenomena. For example, they can be used to model the diffusion of a 
quantity over time or space. To model the evolution of stock prices over time. These equations 
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allow for the incorporation of features such as jumps and volatility clustering, which are not 
possible with traditional differential equations.

Since numerical solutions of SFPDE are frequently sufficient, in the absence of exact 
closed form solutions, numerous numerical techniques have been proposed to solve SFPDE, 
including finite difference methods [4, 5], general Pade approximation [6], meshless point in-
terpolation method [7], discontinues Galerkin method [8], finite element methods [9, 10], finite 
volume method [11], RBF Kansa method [12], spline approximation method [13], polynomial 
and fractional spectral collocation methods [14, 15]. Tadjeran et al. [16] also shown how to 
create numerous high order schemes using the Taylor expansion of the error of the shifted Grün-
wald method. Zhou et al. [17], proposed a third order strategy by combining these assumptions 
with a compact technique.

Meshless approaches based on RBF have recently been used to solve various forms 
of FPDEs. To obtain the TFDE solution, in [18] authors used an implicit meshless collocation 
approach. They also examined the method’s convergence and stability both theoretically and 
numerically. Gu [19] used an implicit meshless methodology based on RBF to solve numer-
ically the anomalous subdiffusion equation and demonstrated the method’s convergence and 
stability. Liu [20] used an implicit meshless approach based on RBF to solve TFDE. Zhuang et 
al. [21] solved the fractional advection-diffusion equation using an implicit meshless approach 
based on the MLS approximation. In [22], the 1- and 2-D time fractional non-linear Schroding-
er equations were solved numerically based on RBF. Liu et al. [23] used FDM to discretize 
the time variable and a meshless approach based on RBF to discretize the space variable to 
determine the solution of the time fractional mobile/immobile transport model. The authors also 
investigated the method’s convergence and stability. 

Fractional derivative of RBF

The fractional derivative (FD) of RBF can be approximated:

	 ( ) = (| |), for all ,rη η − ∈D u D u x y x y 

where Dη is the FD and ū (r) is the RBF. The following theorems illustrate that finding the FD 
of  ū  can result in RBF in one dimension.

Fractional derivative of MQ

Consider the following generalised MQ-RBF:

( ) /22( ) = 1 / 2 ,
γ

γ+ ∈u d d  (1)

where d = cr, r is the Euclidian distance, and c is the shape parameter.
Theorem 1. For ū (d) given in eq. (1), the following results hold for d > 0: 
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where RLDη
d is the Riemann-Liouville FD and CDη

d – the Caputo FD. 
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Proof: The Taylor series expansion of ū (d) about the center d = 0:
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where F32 is the generalised hypergeometric function, and (d)η – the Pochhammer symbol, 
which is defined:

	
2

2

( )( ) = = ( 1)( 2) ( 1)
( )

1( ) = 2
2 2

n

n
n

n n

n nΓ +
+ + + −

Γ

+   
   
   



d
d d d d d

d

d d
d

Fractional derivative of GA

Consider the GA-RBF:
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Theorem 2. For ū (x) given in eq. (2), the following results hold for x > 0:
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Proof: The Taylor series expansion around the center x = 0 of ū (x):
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Formulation of the scheme

The RBF technique is used in this section derive the numerical solution SFPDE and 
to determine the FD of unknown function ū (x, r), FD of RBF are used.

The RBF collocation scheme

The function values at a group of collocation points in the region of xi where  
i = 1, 2,..., Nn, are used to interpolate the spatial derivatives of ū (x, r) at the centres xi. The RBF 
estimation of ū :

=1

( ) ( ), = 1,2,3, ,
nkm m

k i k
i

k Mλ≈∑ u x u x (3)

By replacing the RBF function ū (||x – xj||) in eq. (3), the coefficients λm
i  may be cal-

culated:
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In matrix form, eq. (4) is written:
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Meshless scheme for the solution of SFPDE

The strategy obtained in section The RBF Collocation scheme is applied to the SFPDE 
presented as [24]:

= ( , ), [0, ],H Tη τ
τ
∂

∈ ∈Ω∪∂Ω
∂ x

u
u D u x (9)

The initial and boundary conditions:
0( ,0) = , ∈Ω∪∂Ωu x u x

( , ) = ( ) [0, ],G Tτ τ τ ∈ ∈∂Ωu x x
(10)

Substituting eq. (8) in eq. (9), we have:
d

= ( , )
d

ni H η

τ i iV( ). V( ).x

u
x u D x u (11)

Equation (11) is an ODE system that may be solved using any fast and accurate ODE 
solver to obtain the solution eq. (9). 

Results and discussions

This section aims to evaluate the scheme’s performance by applying it to various test 
problems. The numerical solutions to Test Problems 1 and 2 are also provided in [25], where 
the unknown answer is stated using the Lagrange basis, which is defined:

	
1( ) = ( )L A−x u x

which increases the computing cost of the technique. Local RBF are utilised to overcome this 
limitation. 

Test Problem 1. The following initial boundary value problem is considered in the first 
test problem [24]:

	
= ( , ) [0, ], [0, ], 1 2K Tη
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D u x x
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The values of Kη, c, N, T, and dτ are 1.25, 100, 101, 1, and 0.001.
The well-known double mesh methodology is used for the convergence of the method 

due to the lack of an exact solution, and the results are reported in tab. 1. The numerical findings 
are displayed in figs. 1 and 2, for various values of T and η. The solution’s amplitude and steep-
ness increases as the FD order increases, but the solution’s amplitude and steepness decrease as 
time passes. The approach also yields a smooth solution for any value of T. 

Table 1. Maximum error for numerous values of η and N for Test Problem 1
 N
η 20 40 80 160 

1.8 2.2685 ⋅ 10–4 6.0661 ⋅ 10–5 1.7037 ⋅ 10–5 4.8619 ⋅ 10–6

1.6 6.5001 ⋅ 10–4 1.0986 ⋅ 10–4 6.8699 ⋅ 10–5 2.2608 ⋅ 10–5

1.4 1.3776 ⋅ 10–3 5.2111 ⋅ 10–4 1.9713 ⋅ 10–4 7.4648 ⋅ 10–5

1.2 2.4919 ⋅ 10–3 1.0940 ⋅ 10–3 4.7701 ⋅ 10–4 2.0770 ⋅ 10–4
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Figure 1. Numerical results for numerous values of time level (a) and η (b) for Test Problem 1

Test Problem 2. The following space fractional advection-dispersion equation 
(SFADE) is used in the last problem [24]:

	
= ( , ) ( , ), [0, ], [0, ], 1 < 2, 0 < 1K K Tη

η τ τ τ η
τ
∂

− − ∈ π ∈ ≤ ≤
∂ x x

u
D u x D u x x ñ

the initial and boundary conditions

	 ( )2( ,0) = , (0, ) = ( , ) = 0τ τπ − πu x x x u u

where N, , η, c, T, and dτ have values of 101, 0.5, 1.2,, 100, 1, and 0.001, respectively. The 
maximum error for numerous values of N and η are presented in tab. 2 to examine the method’s 
convergence. To determine the values of the E∞ the double mesh approach is used. In figs. 3 and 
4, numerical solutions for various η and  values are presented. The amplitude of the numerical 
result rises as the value of η increases, as shown in fig. 3, and the amplitude increases when the 
value of  increases, as shown in fig. 4. Also the numerical solution is visualized in fig. 5 for 
various parameters values.

Table 2. Maximum error for numerous values of η and N for Test Problem 2
 N
η 16 32 64 128

1.8 1.5000 ⋅ 10–05 3.6762 ⋅ 10–06 9.6471 ⋅ 10–07 2.5858 ⋅ 10–07

1.6 9.8924 ⋅ 10–05 3.2123 ⋅ 10–05 1.0544 ⋅ 10–05 3.4762 ⋅ 10–06

1.4 2.2124 ⋅ 10–04 8.3640 ⋅ 10–05 3.1658 ⋅ 10–05 1.2002 ⋅ 10–05

1.2 1.0796 ⋅ 10–02 7.0431 ⋅ 10–03 4.7057 ⋅ 10–03 3.2038 ⋅ 10–03

Figure 2. Numerical result 
using Kη = 0.25 and η = 1.8 
for Test Problem 1
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Figure 3. Numerical results for numerous  
values of η using N = 51, t = 10,  = 0.4 for  
Test Problem 2

Figure 4. Numerical results for numerous  
values of  using N = 51, t = 10, and η = 1.5  
for Test Problem 2

Conclusion

The multi term SFPDE are solved by using local RBF. The fractional derivatives of 
RBF are represented in terms of hypergeometric function, rather than series form, which re-
duces the truncation error. Results are compared with some other methods in literature. Results 
are shown to be accurate with the help of double mesh technique. The advantage of using local 
RBF is also discussed by comparison with the methods in literature. The results are plotted for 
different fractional orders which shows the amplitude of the solution depends on the fractional 
derivative order.
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