THERMAL SCIENCE

International Scientific Journal

Authors of this Paper

External Links

RIEMANNIAN SUBMERSIONS ENDOWED WITH A NEW TYPE OF SEMI-SYMMETRIC NON-METRIC CONNECTION

ABSTRACT
In this paper we study relations for the covariant derivative of O'Neill's tensor fields, Riemannian curvature, Ricci curvature and scalar curvature of the Riemannian submersion from a Riemannian manifold with respect to a new type of semi-symmetric non-metric connection to a Riemannian manifold, respectively, and demonstrate the relationship between them.
KEYWORDS
PAPER SUBMITTED: 2023-02-06
PAPER REVISED: 2023-04-08
PAPER ACCEPTED: 2023-06-10
PUBLISHED ONLINE: 2023-09-17
DOI REFERENCE: https://doi.org/10.2298/TSCI2304393K
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2023, VOLUME 27, ISSUE Issue 4, PAGES [3393 - 3403]
REFERENCES
  1. O'Neill, B., The Fundamental Equations of a Submersion, Michigan Math. J., 13 (1966), 4, pp. 459-469
  2. Gray, A., Pseudo-Riemannian Almost Product Manifolds and Submersions, J. Math. Mech., 16 (1967), 7, pp. 715-737
  3. Akyol, M. A., Beyendi, S., Riemannian Submersions Endowed with a Semi-Symmetric Non-Metric Con-Nection, Konuralp J. Math., 6 (2018), 1, pp. 188-193
  4. Sahin, B., Riemannian Submersions, Riemannian Maps in Hermitian Geometry, and their Applications, Academic Press, (2017)
  5. Demir, H., Sari ,R., Riemannian Submersions with Quarter-Symmetric Non-Metric Connection, Journal Engine. Tech. Appl. Sci., 6 (2021), 1, pp. 1-8
  6. Demir, H., Sari, R., Riemannian Submersions Endowed with a Semi-Symmetric Metric Connection, Tbilisi Centre for Mathematical Sciences, 10 (2022), pp. 99-108
  7. Narita, F., Riemannian Submersion with Isometric Reflections with Respect to the Fibers, Kodai Math. J., 16 (1993), 3, pp. 416-427
  8. Sahin, B., Riemannian Submersions from Almost Hermitian Manifolds, Taiwan. Math., 17 (2013), 2, pp. 629-659
  9. Friedmann A., Schouten J. A., Uber die Geometrie der Halbsymmetriscen Ubertragungen, Math. Zeitschr., 21 (1924), Dec., pp. 211-223
  10. Hayden, H. A., Subspaces of A space with Torsion, Proc. London Math. Soc., 34 (1932), 1, pp. 27-50
  11. Yano, K., On Semi-Symmetric Metric Connection, Revue Roumaine de Math., Pure et Appliquées, 15 (1970), pp. 1579-1586
  12. Agashe, N. S., Chafle, M. R., A Semi-Symmetric Non-Metric Connection on a Riemannian Manifold, Indian J., Pure Appl. Math., 23 (1992), pp. 399-409
  13. Sengupta, J., et al., On a Type of Semi-Symmetric Non-Metric Connection on a Riemannian Manifold, Indian J. pure appl. Math., 31 (2000), 12, pp. 1659-1670
  14. Chaubey, S. K., Yildiz, A., Riemannian Manifolds Admitting a New Type of Semi-Symmetric Non-Metric Connection, Turk. J. Math., 43 (2019), 4, pp. 1887-1904
  15. Pak, E., On the Pseudo-Riemannian Spaces, J. Korean Math. Soc., 6 (1969), 1, pp. 23-31
  16. Andonie, O. C., Smaranda, D., Certaines Connexions Semi Symetriques, Tensor, 31 (1977), 1, pp. 8-12
  17. Nirmala, S., et al, A Semi-Symmetric Non-Metric Connection on a Riemannian Manifold, Indian J. Pure Appl. Math., 23 (1992), 6, pp. 399-409
  18. Ozgur, C., Sular, S., Warped Products with a Semi-Symmetric Non-Metric Connection, Arab. J. Sci. Eng., 36 (2011), Apr., pp. 461-473
  19. De, U. C., et al., A Special Type of Semi-Symmetric Non-Metric Connection on a Riemannian Manifold, Fac. Ser. Math., 31 (2016), 2, pp. 529-541
  20. Falcitelli, M., et al., Riemannian Submersions and Related Topics, World Scientific, (2004)
  21. Gundmundson, S., An Introduction to Riemannian Geometry, Lecture Notes, University of Lund, Faculty of Science, (2014)

2025 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence