RIEMANNIAN SUBMERSIONS ENDOWED WITH A NEW TYPE OF SEMI-SYMMETRIC NON-METRIC CONNECTION

by
Esra KARATAS ${ }^{a^{*}}$, Semra ZEREN ${ }^{a}$, and Mustafa ALTIN b
${ }^{\text {a }}$ Department of Mathematics, Faculty of Science and Arts, Inonu University, Malatya, Turkiye
${ }^{\text {b }}$ Technical Sciences Vocational School, Bingol University, Bingol, Turkiye
Original scientific paper
https://doi.org/10.2298/TSCl2304393K

In this paper we study relations for the covariant derivative of O'Neill's tensor fields, Riemannian curvature, Ricci curvature and scalar curvature of the Riemannian submersion from a Riemannian manifold with respect to a new type of semi-symmetric non-metric connection to a Riemannian manifold, respectively, and demonstrate the relationship between them.
Key words: Riemannian manifold, Riemannian submersion, curvature tensors a new type semi-symmetric non-metric connection

Introduction

Defining smooth mappings from one manifold to another is a common method of comparing two manifolds. Submersion is one such map, with a rank equal to the target manifold dimension. The concept of submersion has enabled many important geometric studies. O'Neill [1] and Gray [2] introduced Riemannian submersion between Riemannian submanifolds. Also, for other studies on Riemannian submersion, [3-8].

On the other hand, the concept of semi-symmetric linear connection on a manifold M was introduced by Friedman and Schouten [9]. Also, the semi-symmetric metric connection was defined and studied by Hayden [10]. Later, Yano [11] researched a Riemannian manifold with a new connection, known as a semi-symmetric metric connection. Also, in 1992, Agashe and Chafle [12] introduced a new class of the semi-symmetric connection, called the semisymmetric non-metric connection, on a Riemannian manifold and studied some of its geometric properties. After, Sengupta et al. [13] defined a new type of semi-symmetric non- metric connection on Riemannian manifold. Using these studies, Chaubey and Yildiz [14] have defined and demonstrated the existence of a new type of semi-symmetric non-metric connection on a Riemannian manifold. Many author have studied this type of connection [15-19].

Motivated by this studies in the present paper we consider Riemannian submersions from a Riemanian manifold with respect to a new type of semi-symmetric non-metric connection to a Riemannian manifold.

Preliminaries

Let $\left(M, g_{M}\right)$ and $\left(N, g_{N}\right.$ be C^{∞} - Riemannian manifolds of dimension m and n, respectively, Riemannian manifolds. A Riemannian submersion $f: M \rightarrow N$ is a mapping of M

[^0]on N satisfies axioms: i. f has maximal rank and ii. f_{*} preserves the lengths of horizontal vectors. If a surjective C^{∞} - manifold $f: M \rightarrow N$ has maximal rank at any point M, it is a $C^{\infty}-$ submersion. We obtain an integrable distribution v that corresponds to the foliation of M by putting $v_{p}=\operatorname{ker} f_{* p}$ for any $p \in M$. Each v_{p} is defined the vertical space at p, v is the vertical distribution, the sections of v are the known vertical vector fields and determine a Lie subalgebra
$\chi^{\nu}(M)$ of $\chi(M)$. Let H represent, the complementary distribution of v that Riemannian metric g produces. Therefore, the orthogonal decomposition $T_{p} M=v_{p} \oplus \mathcal{H}_{p}$ at any $p \in M$ is called the horizontal space at p. The sections of the horizontal distribution \mathcal{H} are the horizontal vector fields. They establish a subspace $\chi^{h}(M)$ of $\chi(M)$. The $v \mathrm{E}$ and $h E$ stand for the vertical and horizontal components of E, respectively, for any $E \in \chi(M)$ [20]. A horizontal vector field X on M is said to be basic if X is f - related to a vector field X^{\prime} on N. A Riemannian submersion determines O'Neill tensor fields with the type (1,2). For any $E, F \in \chi(M)$, the fundamental tensor fields are:
\[

$$
\begin{equation*}
\mathcal{T}_{E} F=h \nabla_{v E} v F+v \nabla_{v E} h F, \quad \mathcal{A}_{E} F=v \nabla_{h E} h F+h \nabla_{h E} v F \tag{1}
\end{equation*}
$$

\]

where $v: \chi(M) \rightarrow \chi^{\nu}(M)$ and $\mathrm{h}: \chi(M) \rightarrow \chi^{h}(M)$ are vertical and horizontal projections, respectively.

For any $X, Y \in \chi^{h}(M)$ and $U, V \in \chi^{\nu}(M)$, from eq. (1), we can obtain:

$$
\begin{array}{cl}
\nabla_{U} V=\mathcal{T}_{U} V+v \nabla_{U} V, \quad \nabla_{U} X=\mathcal{T}_{U} X+h \nabla_{U} X, \quad \mathcal{T}_{U} V=\mathcal{T}_{V} U \\
\nabla_{X} U=\mathcal{A}_{X} U+v \nabla_{X} U, \quad \nabla_{X} Y=\mathcal{A}_{X} Y+h \nabla_{X} Y, \quad \mathcal{A}_{X} Y=-\mathcal{A}_{Y} X \tag{3}
\end{array}
$$

So, if X is basic vector field then, $h \nabla_{U} X=h \nabla_{X} U=\mathcal{A}_{X} U$. Also, for any $E, F, H \in$ $\chi(M)$ the covariant derivatives of A and T are given by [4]:

$$
\begin{align*}
& \left(\nabla_{E} \mathcal{A}\right)_{F} H=\nabla_{E}\left(\mathcal{A}_{F} H\right)-\mathcal{A}_{\nabla_{E} F}(H)-\mathcal{A}_{F}\left(\nabla_{E} H\right) \tag{4}\\
& \left(\nabla_{E} \mathcal{T}\right)_{F} H=\nabla_{E}\left(\mathcal{T}_{F} H\right)-\mathcal{T}_{\nabla_{E} F}(H)-\mathcal{T}_{F}\left(\nabla_{E} H\right) \tag{5}
\end{align*}
$$

Lemma 1. Let $f: M \rightarrow N$ be Riemannian submersion and X, Y basic vector fields on M, f - related to X^{\prime} and Y^{\prime} on N, then we have the following properties:
i. $\quad h[X, Y]$ is a basic vector field and $f_{*} h[X, Y]=\left[X^{\prime}, Y^{\prime}\right] \circ f$,
ii. $\quad h\left(\nabla_{X} Y\right)$ is a basic vector field f - related to $\left(\nabla^{\prime}{ }_{X} Y^{\prime}\right)$, where ∇ and ∇^{\prime} are the Levi-Civita connection on M and N respectively,
iii. For $\forall \mathrm{U} \in \chi^{\nu}(M)$ and $\forall \mathrm{E} \in \chi(M),[E, U] \in \Gamma(\mathrm{v})[20]$.

Definition 1. Let (M, g) be a Riemannian manifold, $p \in \mathrm{M}$ and K_{p} sectional curvature at p. Then the function K_{p} given by:

$$
K_{p}=\frac{g M[R(X, Y) Y, X]}{\|X\|^{2}\|Y\|^{2}-g_{M}(X, Y)^{2}}
$$

is called the sectional curvature at p. This curvature is usually used in the in the form of $K(X$, Y) for $K\left(\operatorname{span}_{\mathrm{R}}\{\mathrm{X}, \mathrm{Y}\}\right)$. The Ricci curvature:

$$
\operatorname{Ric}: C_{2}^{\infty}(T M) \rightarrow C_{0}^{\infty}(T M) \quad \text { by } \quad \operatorname{Ric}(X, Y)=\sum_{i=1}^{m} g_{M}\left[R\left(X, e_{i}\right) e_{i}, Y\right]
$$

Also scalar curvature $\tau \in \mathrm{C}^{\infty}(\mathrm{M})$ by:

$$
\tau=\sum_{i=1}^{m} R_{i}\left(e_{j}, e_{j}\right)=\sum_{j=1}^{m} \sum_{i=1}^{m} g_{M}\left[R\left(e_{i}, e_{j}\right) e_{j}, e_{i}\right]
$$

where $\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ is any local orthonormal frame for the tangent bundle. We denote $\operatorname{Ric}(X$, Y) by $S(X, Y)$ in this paper [21].

Definition 2. Let (M, g_{M}) be Riemannian manifold. We call f - adapted a local orthonormal frame $\left\{X i, U_{j}\right\}_{1 \leq i \leq n, 1 \leq j \leq r}$ on M, such that each X_{i} is horizontal and each U_{j} is vertical [20].

Lemma 2. Let $f:\left(M, g_{M}\right) \rightarrow\left(N, g_{N}\right)$ be a Riemannian submersion between Riemannian manifolds $\left(M, g_{M}\right)$ and $\left(N, g_{N}\right)$. Then we get:

$$
\begin{align*}
& \sum_{i=1}^{n} g_{M}\left(\mathcal{T}_{U} X_{i}, \mathcal{T}_{v} X_{j}\right)=\sum_{j=1}^{r} g_{M}\left(\mathcal{T}_{U} U_{j}, \mathcal{T}_{v} U_{j}\right) \tag{6}\\
& \sum_{i=1}^{n} g_{M}\left(\mathcal{A}_{X} X_{i}, \mathcal{A}_{Y} X_{i}\right)=\sum_{j=1}^{r} g_{M}\left(\mathcal{A}_{X} U_{j}, \mathcal{A}_{Y} U_{j}\right) \tag{7}\\
& \sum_{i=1}^{n} g_{M}\left(\mathcal{A}_{X} X_{i}, \mathcal{T}_{U} X_{i}\right)=\sum_{j=1}^{r} g_{M}\left(\mathcal{A}_{X} U_{j}, \mathcal{T}_{U} U_{j}\right) \tag{8}
\end{align*}
$$

where $X, Y \in \chi^{h}(M), U, V \in \chi^{\nu}(M)$, and $\left\{X i, U_{j}\right\}$ is f-adaptable frame on (M, g_{M}) [20].
Definition 3. Let $\left(M, g_{M}\right)$ be a Riemannian manifold and V be the local orthonormal frame of the vertical distribution. Then we define horizontal vector field \mathcal{N} on (M, g_{M} [20]:

$$
\mathcal{N}=\sum_{j=1}^{r} \mathcal{T}_{U_{j}} U_{j}
$$

Lemma 3. Let $f:\left(M, g_{M}\right) \rightarrow\left(N, g_{N}\right)$ be a Riemannian submersion between Riemannian manifolds $\left(M, g_{M}\right)$ and $\left(N, g_{N}\right)$. Let $\left\{U_{j}\right\}_{1 \leq j \leq r}$ be a local orthonormal frame of V. In this case for any $E \in \chi(M)$, we obtain [20]:

$$
g_{M}\left(\nabla_{E} \mathcal{N}, X\right)=\sum_{j=1}^{r} g_{M}\left[\left(\nabla_{E} \mathcal{T}\right)_{U_{j}} U_{j}, X\right]
$$

Chaubey and Yildiz [14] introduce a new type of semi-symmetric non-metric connection on a Riemannian manifold as:

$$
\begin{equation*}
\tilde{\nabla}_{X} Y=\nabla_{X} Y+\frac{1}{2}[\eta(Y) X-\eta(X) Y] \tag{9}
\end{equation*}
$$

for arbitrary vector fields X and Y on M and η is a 1 - form.
Now, we construct an example for Riemannian submersion.
Example 1. Let \mathbb{R}^{5} and \mathbb{R}^{4} be Riemannian manifolds endowed with g_{M} and g_{N} standard inner product metrics, where $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ and y_{1}, y_{2}, y_{3} canonical coordinates on \mathbb{R}^{5} and \mathbb{R}^{4} respectively $f:\left(\mathbb{R}^{5}, g_{M}\right) \rightarrow\left(\mathbb{R}^{4}, g_{N}\right)$ be submersion defined by:

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=\left(x_{1}, \frac{x_{2}+x_{5}}{\sqrt{2}}, x_{3}, x_{4}\right)
$$

Then the Jacobian matrix of f is:

$$
\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 / \sqrt{2} & 0 & 0 & 1 / \sqrt{2} \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

A straight computations gives:

$$
\begin{gathered}
\operatorname{ker} f_{*}=\operatorname{span}\left\{Z_{1}=-\frac{\partial}{\partial x_{2}}+\frac{\partial}{\partial x_{5}}\right\}, \\
\left(\operatorname{ker} f_{*}\right)^{\perp}=\operatorname{span}\left\{T_{1}=\frac{\partial}{\partial x_{2}}+\frac{\partial}{\partial x_{5}}, T_{2}=\frac{\partial}{\partial x_{1}}, T_{3}=\frac{\partial}{\partial x_{3}}, T_{4}=\frac{\partial}{\partial x_{4}},\right\}
\end{gathered}
$$

Also by direct computations yields:

$$
f_{*}\left(T_{1}\right)=\sqrt{2} \frac{\partial}{\partial y_{2}}, \quad f_{*}\left(T_{2}\right)=\frac{\partial}{\partial y_{1}}, \quad f_{*}\left(T_{3}\right)=\frac{\partial}{\partial y_{3}}, \quad f_{*}\left(T_{4}\right)=\frac{\partial}{\partial y_{4}}
$$

f is a Riemannian submersion from the following equations:

$$
\begin{aligned}
& g_{M}\left(T_{1}, T_{1}\right)=g_{N}\left[f_{*}\left(T_{1}\right), f_{*}\left(T_{1}\right)\right], \quad g_{M}\left(T_{2}, T_{2}\right)=g_{N}\left[f_{*}\left(T_{2}\right), f_{*}\left(T_{2}\right)\right], \\
& g_{M}\left(T_{3}, T_{3}\right)=g_{N}\left[f_{*}\left(T_{3}\right), f_{*}\left(T_{3}\right)\right], \quad g_{M}\left(T_{4}, T_{4}\right)=g_{N}\left[f_{*}\left(T_{4}\right), f_{*}\left(T_{4}\right)\right]
\end{aligned}
$$

Riemannian submersions endowed with a new type of semi-symmetric non-metric connection

Let M be a Riemannian manifold with metric g_{M}, f be a Riemannian submersion from M onto a Riemannian manifold N with metric g_{N} and $E, F \in \chi(M)$. Then we have:

$$
\begin{align*}
& \tilde{\mathcal{T}}_{E} F=h \tilde{\nabla}_{v E} v F+v \tilde{\nabla}_{v E} h F=\mathcal{T}_{E} F+\frac{1}{2} \eta(h F) v E \tag{10}\\
& \tilde{\mathcal{A}}_{E} F=v \tilde{\nabla}_{h E} h F+h \tilde{\nabla}_{h E} \nu F=\mathcal{A}_{E} F+\frac{1}{2} \eta(v F) h E \tag{11}
\end{align*}
$$

where $\tilde{\mathcal{T}}$ and $\tilde{\mathcal{A}}$ are tensor fields on M admitting to a new type of semi-symmetric nonmetric connection $\tilde{\nabla}$.

Proposition 1 Let $f:\left(M, g_{M}\right) \rightarrow\left(N, g_{N}\right)$ be a Riemannian submersion between Riemannian manifolds $\left(M, g_{M}\right)$ and $\left(N, g_{N}\right)$. Then, $\tilde{\mathcal{T}}$ is symmetric on the vertical distribution and $\tilde{\mathrm{A}}$ - is antisymmetric on the horizontal distribution.

Proof 1. Since $\tilde{\mathcal{T}}_{U} V=\mathcal{T}_{U} V$ for $U, V \in \mathcal{X}^{\nu}(M)$ and \mathcal{T} is symmetric on the vertical distribution in Riemannian submersion, we get $\tilde{\mathcal{T}}_{U} V=\tilde{\mathcal{T}}_{U} V$. Similarly, because of $\tilde{\mathcal{A}}_{X} Y=\mathcal{A}_{X} Y$ for $X, Y \in \mathcal{X}^{h}(M)$ and $\underset{\sim}{\mathcal{A}}$ is anti-symmetric on the horizontal distribution in Rimannian submersion, we obtain $\tilde{\mathcal{A}}_{X} Y=\tilde{\mathcal{A}}_{Y} Y+2 \mathcal{A}_{X} Y$.

Thus, the proof is completed.

Lemma 4. Let $f:\left(M, g_{M}\right) \rightarrow\left(N, g_{N}\right)$ be a Riemannian submersion between Riemannian manifolds $\left(M, g_{M}\right),\left(N, g_{N}\right)$ and $E, F, G \in \mathcal{X}(M)$. Then we obtain,
i. $g_{M}\left(\tilde{\mathcal{T}}_{E} F, G\right)=g_{M}\left(\tilde{\mathcal{T}}_{E} G, F\right)+2 g_{M}\left(\mathcal{T}_{E} F, G\right)+\frac{1}{2}\left[\eta(h F) g_{M}(v E, v G)-\eta(h G) g_{M}(v E, v F)\right]$
ii. $g_{M}\left(\tilde{\mathcal{A}}_{E} F, G\right)=g_{M}\left(\tilde{\mathcal{A}}_{E} G, F\right)+2 g_{M}\left(\mathcal{A}_{E} F, G\right)+\frac{1}{2}\left[\eta(v F) g_{M}(h E, h G)-\eta(v G) g_{M}(h E, h F)\right]$

Proof 2. i) For any $E, F, G \in \mathcal{X}(M)$, by using (10) we obtain:

$$
\begin{gather*}
g_{M}\left(\tilde{\mathcal{T}}_{E} F, G\right)=g_{M}\left(\mathcal{T}_{E} F, v G\right)+\frac{1}{2} \eta(h F) g_{M}(v E, v G)+g_{M}\left(\mathcal{T}_{E} F, v G\right) \\
g_{M}\left(\tilde{\mathcal{T}}_{E} F, G\right)=g_{M}\left(\mathcal{T}_{E} F, G\right)+\frac{1}{2} \eta(h F) g_{M}(v E, h G) \tag{12}
\end{gather*}
$$

Similarly we get:

$$
\begin{equation*}
g_{M}\left(\tilde{\mathcal{T}}_{E} G, F\right)=g_{M}\left(\mathcal{T}_{E} G, F\right)+\frac{1}{2} \eta(h F) g_{M}(v E, v G) \tag{13}
\end{equation*}
$$

If eq. (12) is subtracted from eq. (13), i. comes. By using same way, it can see easily ii. Thus the proof is completed.

Lemma 5. Let $f:\left(M, g_{M}\right) \rightarrow\left(N, g_{N}\right)$ be a Riemannian submersion between Riemannian manifolds $\left(M, g_{M}\right)$ and $\left(N, g_{N}\right)$.Then we obtain:

$$
\begin{array}{ll}
\tilde{\nabla}_{V} X=\mathcal{T}_{V} X+h \tilde{\nabla}_{V} X+\frac{1}{2} \eta(X) V, & \tilde{\nabla}_{V} W=\mathcal{T}_{V} W+\tilde{\nabla}_{V} W \\
\tilde{\nabla}_{X} V=\mathcal{A}_{X} V+\nu \tilde{\nabla}_{X} V+\frac{1}{2} \eta(V) X, & \tilde{\nabla}_{X} Y=\mathcal{A}_{X} Y+h \tilde{\nabla}_{X} Y \tag{15}
\end{array}
$$

for $V, W \in \mathcal{X}^{v}(\mathrm{M})$ and $X, Y \in \mathcal{X}^{h}(\mathrm{M})$, where $\tilde{\nabla}_{V} W=v \tilde{\nabla}_{V} W$.
Proof 3. Since ∇ is a Levi-Civita connection, using eq. (9), we obtain:

$$
\tilde{\nabla}_{V} X=v\left\{\nabla_{V} X+\frac{1}{2}[\eta(X) V-\eta(V) X]\right\}+h \tilde{\nabla}_{V} X
$$

Also, from (10), we obtain $\mathcal{T}_{V} X+v \nabla_{V} X$. Thus, we can easily get the first eq. (14). The other equations can be obtained similarly.

We define following expression by using eqs. (4) and (5) for a new type semisymmetric non-metric connections.

Definition 4. Let $f: M \rightarrow N$ be a Riemannian submersion between Riemannian manifolds $\left(M, g_{M}\right)$ and $(N, g \mathrm{~N})$. The covariant derivatives of \mathcal{T} and \mathcal{A} are:

$$
\begin{align*}
& \left(\tilde{\nabla}_{E} \tilde{\mathcal{T}}\right)_{F} H=\tilde{\nabla}_{E}\left(\mathcal{T}_{F} H\right)-\mathcal{T}_{\tilde{\nabla}_{E} F} H-\mathcal{T}_{F}\left(\tilde{\nabla}_{E} H\right) \tag{16}\\
& \left(\tilde{\nabla}_{E} \mathcal{A}\right)_{F} H=\tilde{\nabla}_{E}\left(\mathcal{A}_{F} H\right)-\mathcal{A}_{\tilde{\nabla}_{E} F} H-\mathcal{A}_{F}\left(\tilde{\nabla}_{E} H\right) \tag{17}
\end{align*}
$$

where E, F, G arbitrary vector fields on $\chi(M)$.

Lemma 6. Let $f:\left(M, g_{M}\right) \rightarrow\left(N, g_{N}\right)$ be a Riemannian submersion between Riemannian manifolds $\left(M, g_{M}\right)$ and $\left(N, g_{N}\right)$. Then we obtain,

$$
\begin{gather*}
\left(\tilde{\nabla}_{X} \mathcal{A}\right)_{W}=-\mathcal{A}_{\mathcal{A}_{X} W+\frac{1}{2} \eta(W) X}, \quad\left(\tilde{\nabla}_{V} \mathcal{T}\right)_{Y}=-\mathcal{T}_{\mathcal{T}_{V} Y+\frac{1}{2} \eta(Y) V} \\
\left(\tilde{\nabla}_{V} \mathcal{A}\right)_{W}=-\mathcal{A}_{\mathcal{T}_{V} W}, \quad\left(\tilde{\nabla}_{X} \mathcal{T}\right)_{Y}=\mathcal{T}_{\mathcal{A}_{X} Y} \tag{18}
\end{gather*}
$$

for any $X, Y \in \chi^{h}(M)$ and $V, W \in \chi^{\nu}(M)$.
Proof 4. Here, we will only give the proof of the first equation in (18). The proof of other equations in (18) can be done in a similar way. Let F be an arbitrary vector field on M. If eq. (4) is used for a new type of semi-symmetric non-metric connections, then we obtain:

$$
\begin{equation*}
\left(\tilde{\nabla}_{X} \mathcal{A}\right)_{W} F=\tilde{\nabla}_{X}\left(\mathcal{A}_{W} F\right)-\mathcal{A}_{\tilde{\nabla}_{X} W} F-\mathcal{A}_{W} \tilde{\nabla}_{X} F \tag{19}
\end{equation*}
$$

Since A is horizontal, we see that $\mathcal{A}_{W}=\mathcal{A}_{h W}=0$. Also, if we use the first eq. (15), we get:

$$
\left(\tilde{\nabla}_{X} \mathcal{A}\right)_{W} F=-\mathcal{A}_{\tilde{\nabla}_{x} W} F=-\mathcal{A}_{\mathcal{A}_{X} W+v \tilde{\nabla}_{X} W+\frac{1}{2} \eta(W) X} F=-\mathcal{A}_{\mathcal{A}_{X} W+\frac{1}{2} \eta(W) X} F
$$

Thus the proof is completed.

Curvature relations with respect to a new type

 of semi-symmetric non- metric connectionIn this section, we will obtain the Riemannian curvatures of the Riemannian manifold with respect to a new type of semi-symmetric non-metric connection according to the O'Neill tensor fields and their covariant derivatives.

Theorem 1. Let $f:\left(M, g_{M}\right) \rightarrow\left(N, g_{N}\right)$ be a Riemannian submersion between Riemannian manifolds $\left(M, g_{M}\right)$ and $\left(N, g_{N}\right)$. Riemannian curvatures of M with respect to a new type of semi-symmetric non-metric connection $\tilde{\nabla}$ are given by:

$$
\begin{gather*}
\tilde{R}(X, Y) V=\mathcal{A}_{X} \mathcal{A}_{Y} V+h \tilde{\nabla}_{X} \mathcal{A}_{Y} V+\mathcal{A}_{X} \nu \tilde{\nabla}_{Y} V+\nu \tilde{\nabla}_{X} \nu \tilde{\nabla}_{Y} V-\mathcal{T}_{[X, Y]} V- \\
-\mathcal{A}_{Y} \mathcal{A}_{X} V-h \tilde{\nabla}_{Y} \mathcal{A}_{X} V-\mathcal{A}_{Y} \nu \tilde{\nabla}_{X} V-\nu \tilde{\nabla}_{Y} \tilde{\nabla}_{X} V-\tilde{\nabla}_{[X, Y]} V+ \\
\quad+\frac{1}{2} \eta(V)\left[\left(\mathcal{A}_{X} h Y+h \tilde{\nabla}_{X} h Y\right)-\left(\mathcal{A}_{Y} h X+h \tilde{\nabla}_{Y} h X\right)\right] \tag{20}\\
\tilde{R}(U, V) W= \\
-\mathcal{T}_{U} \mathcal{T}_{V} W+h \tilde{\nabla}_{U} \mathcal{T}_{V} W-h \tilde{\nabla}_{[U, V]} W+\mathcal{T}_{U} \hat{\nabla}_{V} W+\hat{\nabla}_{U} \hat{\nabla}_{V} W-\hat{\nabla}_{[U, V]} W- \tag{21}\\
\tilde{R}(X, Y) Z= \\
\quad \mathcal{T}_{U} W+\frac{1}{2}\left[\eta\left(\mathcal{T}_{V} W\right) U-\eta\left(\mathcal{T}_{U} W\right) V\right]-\mathcal{T}_{V}^{\prime} \hat{\nabla}_{U} W-\hat{\nabla}_{V} \hat{\nabla}_{U}^{\prime} W-\nabla_{Y}^{\prime} \nabla_{X}^{\prime} Z+\mathcal{A}_{X} \mathcal{A}_{Y} Z-\mathcal{A}_{Y} \mathcal{A}_{X} Z-2 \mathcal{A}_{Z} \mathcal{A}_{X} Y- \\
\quad-2 \mathcal{T}_{\mathcal{A}_{X} Y} Z+\nu \tilde{\nabla}_{X} \mathcal{A}_{Y} Z-\nu \tilde{\nabla}_{Y} \mathcal{A}_{X} Z+\mathcal{A}_{X} \nabla_{Y}^{\prime} Z-\mathcal{A}_{Y} \nabla_{X}^{\prime} Z+ \tag{22}\\
\\
\quad+\frac{1}{2}\left[\eta\left(\mathcal{A}_{Y} Z\right) X-\eta\left(\mathcal{A}_{X} Z\right) Y-\eta(Z)(X, Y)\right]
\end{gather*}
$$

$$
\begin{gather*}
\tilde{R}(X, V) Y=\mathcal{A}_{X} \mathcal{T}_{V} Y+v \tilde{\nabla}_{X} \mathcal{T}_{V} Y+\frac{1}{2} \eta\left(\mathcal{T}_{V} Y\right) X+\mathcal{A}_{X} h \tilde{\nabla}_{V} Y+h \tilde{\nabla}_{X} h \tilde{\nabla}_{V} Y+ \\
+\frac{1}{2} \eta(Y)\left[\mathcal{A}_{X} V+v \tilde{\nabla}_{X} V+\frac{1}{2} \eta(V) h X-(X, V)\right]-\mathcal{T}_{V} \mathcal{A}_{X} Y-\hat{\nabla}_{V} \mathcal{A}_{X} Y- \\
\quad-\mathcal{T}_{V} h \tilde{\nabla}_{X} Y-h \tilde{\nabla}_{V} \nabla_{X}^{\prime} Y-\frac{1}{2} \eta\left(h \tilde{\nabla}_{X} Y\right) V-\mathcal{T}_{[X, V]} Y-h \tilde{\nabla}_{[X, V]} Y \tag{23}
\end{gather*}
$$

where $U, V, W \in \chi^{\nu}(M)$ and $X, Y, Z \in \chi^{h}(M)$.
Proof 5. We will only give the proof of eq. (20). The proofs of eqs. (21), (22), and (23) can be obtained easily in a similar way. We define Rimannian curvature tensor of M with respect to a new type of semi-symmetric non-metric connection $\tilde{\nabla}$ by:

$$
\begin{equation*}
\tilde{R}(X, Y) V=\tilde{\nabla}_{X} \tilde{\nabla}_{Y} V-\tilde{\nabla}_{Y} \tilde{\nabla}_{X} V-\tilde{\nabla}_{[X, Y]} V \tag{24}
\end{equation*}
$$

From $[X, Y] \in \chi^{\nu}(M)$, eqs. (14), (15), and (24), we get:

$$
\begin{aligned}
& \tilde{R}(X, Y) V=\tilde{\nabla}_{X} \mathcal{A}_{Y} V+\tilde{\nabla}_{X} v \tilde{\nabla}_{Y} V-\tilde{\nabla}_{Y} \mathcal{A}_{X} V-\tilde{\nabla}_{Y} \tilde{\nabla}_{X} V+ \\
& \quad+\frac{1}{2} \eta(V) \tilde{\nabla}_{X} h Y-\frac{1}{2} \eta(V) \tilde{\nabla}_{Y} h X-\mathcal{T}_{[X, Y]} V-\hat{\nabla}_{[X, Y]} V
\end{aligned}
$$

If the necessary straightforward computation is made in the last equation, we obtain eq. (20).

Corollary 1. Let $f:\left(M, g_{M}\right) \rightarrow\left(N, g_{N}\right)$ be a Riemannian submersion between Riemannian manifolds $\left(M, g_{M}\right)$ and $\left(N, g_{N}\right)$. The \tilde{R}, R^{\prime}, and \hat{R} denote the Rimannian curvatures of M, N, and $\left[f^{-1}(x), \hat{g} x\right]$ for $x \in N$ respectively. In this case, the following equations are obtained:

$$
\begin{gather*}
g_{M}[\tilde{R}(U, V) W, F]=g_{M}[\hat{R}(U, V) W, F]-g_{M}\left(\mathcal{T}_{U} F, \mathcal{T}_{V} W\right)+g_{M}\left(\mathcal{T}_{V} F, \mathcal{T}_{U} W\right)+ \\
+\frac{1}{2}\left[\eta\left(\mathcal{T}_{V} W\right) g_{M}(U, F)-\eta\left(\mathcal{T}_{U} W\right) g M(V, F)\right] \tag{25}\\
g_{M}[\tilde{R}(U, V) W, X]=g_{M}\left[\left(\tilde{\nabla}_{U} \mathcal{T}\right)_{V} W, X\right]-g_{M}\left[\left(\tilde{\nabla}_{V} \mathcal{T}\right)_{U} W, X\right] \tag{26}\\
g_{M}[\tilde{R}(X, Y) Z, H]=g_{M}\left[R^{\prime}(X, Y) Z, H\right]-g_{M}\left(\mathcal{A}_{X} H, \mathcal{A}_{Y} Z\right)+g_{M}\left(\mathcal{A}_{Y} H, \mathcal{A}_{X} Z\right)+ \\
+2 g_{M}\left(\mathcal{A}_{Z} H, \mathcal{A}_{X} Y\right)+\frac{1}{2}\left[\eta\left(\mathcal{A}_{Y} Z\right) g_{M}(X, H)-\eta\left(\mathcal{A}_{X} Z\right) g_{M}(Y, H)\right] \tag{27}\\
g_{M}[\tilde{R}(X, Y) Z, V]=-2 g_{M}\left(\mathcal{T}_{V} Z, \mathcal{A}_{X} Y\right)+g_{M}\left(\tilde{\nabla}_{X} \mathcal{A}_{Y} Z, V\right)-g_{M}\left(\tilde{\nabla}_{Y} \mathcal{A}_{X} Z, V\right)+ \\
+g_{M}\left(\mathcal{A}_{X} \nabla^{\prime}{ }_{Y} Z, V\right)-g_{M}\left(\mathcal{A}_{Y} \nabla^{\prime}{ }_{X} Z, V\right)-\frac{1}{2} \eta(Z) g_{M}[(X, Y), V] \tag{28}\\
g_{M}[\tilde{R}(X, Y) V, W]=\frac{1}{2}\left\{g_{M}\left[\left(\tilde{\nabla}_{X} \mathcal{A}\right)(Y, V), W\right]-g_{M}\left[\left(\tilde{\nabla}_{Y} \mathcal{A}\right)(X, V), W\right]-\eta(V) g_{M}\left(\mathcal{A}_{X} Y, W\right)\right\}+ \\
+g_{M}\left(\tilde{\nabla}_{X} v \tilde{\nabla}_{Y} V, W\right)-g_{M}\left(\tilde{\nabla}_{Y} v \tilde{\nabla}_{X} V, W\right)-g_{M}\left(\tilde{\nabla}_{[X, Y]} V, W\right) \tag{29}
\end{gather*}
$$

$$
\begin{gather*}
g_{M}[\tilde{R}(X, Y) V, H]=g_{M}\left[\left(\tilde{\nabla}_{X} \mathcal{A}\right)(Y, V), H\right]-g_{M}\left[\left(\tilde{\nabla}_{Y} \mathcal{A}\right)(X, V), H\right]+ \\
+\frac{1}{2} \eta(V)\left[g_{M}\left(\tilde{\nabla}_{X} Y, H\right)-g_{M}\left(\tilde{\nabla}_{Y} X, H\right)\right]+g_{M}\left(\mathcal{T}_{V} H,[X, Y]\right) \tag{30}\\
g_{M}[\tilde{R}(X, Y) Y, W]=g_{M}\left[\left(\tilde{\nabla}_{X} \mathcal{T}\right)_{V} Y, W\right]-g_{M}\left[\left(\tilde{\nabla}_{V} \mathcal{A}\right)_{X} Y, W\right]+g_{M}\left(\mathcal{A}_{Y} W, h \tilde{\nabla}_{V} X\right)+ \\
+g_{M}\left(\mathcal{T}_{W} Y, v \tilde{\nabla}_{V} X\right)+\frac{1}{2}\left[\eta(Y) g_{M}\left(\tilde{\nabla}_{V} X, W\right)-\eta\left(h \tilde{\nabla}_{X} Y\right) g_{M}(V, W)\right] \tag{31}\\
g_{M}[\tilde{R}(X, V) Y, H]=g_{M}\left(\mathcal{T}_{V} H, \mathcal{A}_{X} Y\right)-g_{M}\left(\mathcal{A}_{X} H, \mathcal{T}_{V} Y\right)+ \\
+g_{M}\left(h \tilde{\nabla}_{X} h \tilde{\nabla}_{V} Y, H\right)-g_{M}\left(h \tilde{\nabla}_{V} h \tilde{\nabla}_{X} Y, H\right)-g_{M}\left(h \tilde{\nabla}_{[X, V]} Y, H\right)+ \\
+\frac{1}{2}\left\{\eta\left(\mathcal{T}_{V} Y\right) g_{M}(X, \mathrm{H})+\eta(Y)\left[g_{M}\left(\mathcal{A}_{X} V, H\right)+\frac{1}{2} \eta(V) g_{M}(X, \mathrm{H})\right]\right\} \tag{32}
\end{gather*}
$$

where $X, Y, Z, H \in \chi^{h}(M)$ and $U, V, W, F \in \chi^{\nu}(M)$.
Proof 6. Here we will investigate eq. (31). The proof of other equations can be obtained in a similar way. By using eqs. (14), (15), and (23) with straightforward computations, we have:

$$
\begin{gather*}
g_{M}[R(X, V) Y, H]=g_{M}\left(v \tilde{\nabla}_{X} \mathcal{T}_{V} Y, W\right)+g_{M}\left(\mathcal{A}_{X} h \tilde{\nabla}_{V} Y, W\right)+\frac{1}{2} \eta(Y) g_{M}\left(v \tilde{\nabla}_{X} V, W\right)- \\
-g_{M}\left(\tilde{\nabla}_{V} \mathcal{A}_{X} Y, W\right)-g_{M}\left(\mathcal{T} v h \tilde{\nabla}_{X} Y, W\right)-\frac{1}{2} \eta(Y) g_{M}([X, V], W)- \\
\quad-\frac{1}{2} \eta\left(h \tilde{\nabla}_{X} Y\right) g_{M}(V, W)-g_{M}\left(\mathcal{T}_{\nu \tilde{\nabla}_{x V}} Y, W\right)+g_{M}\left(\mathcal{T}_{v \tilde{\nabla}_{V X}} Y, W\right) \tag{33}
\end{gather*}
$$

where $X, Y \in \chi^{h}(M), V, W \in \chi^{v}(M)$. On the other hand from eq. (16) we get:

$$
g_{M}\left[\left(\tilde{\nabla}_{X} \mathcal{T}\right)_{V} Y, W\right]=g_{M}\left(\tilde{\nabla}_{X} \mathcal{T}_{V} Y, W\right)+g_{M}\left(\mathcal{T}_{\tilde{\nabla}_{X} V} Y, W\right)-g_{M}\left(\mathcal{T}_{V} \tilde{\nabla}_{X} Y, W\right)
$$

Additionally from eq. (15) we have:

$$
\begin{gathered}
g_{M}\left[\left(\tilde{\nabla}_{X} \mathcal{T}\right)_{V} Y, W\right]=g_{M}\left(\mathcal{A}_{X} \mathcal{T}_{V} Y, W\right)-g_{M}\left(\tilde{\nabla}_{X} \mathcal{T}_{V} Y, W\right)+\frac{1}{2} \eta\left(\mathcal{T}_{V} Y\right) g_{M}(h X, W)- \\
-g_{M}\left(\mathcal{T}_{\mathcal{A}_{X} V} Y, W\right)-g_{M}\left(\mathcal{T}_{\tilde{\nabla}_{X}} V Y, W\right)-\frac{1}{2} \eta(V) g_{M}\left(\mathcal{T}_{h X} Y, W\right)- \\
-g_{M}\left(\mathcal{T}_{V} \mathcal{A}_{X} Y, W\right)-g_{M}\left(\mathcal{T}_{V} h \tilde{\nabla}_{X} Y, W\right)
\end{gathered}
$$

Thus we obtain:

$$
\begin{equation*}
g_{M}\left[\left(\tilde{\nabla}_{X} \mathcal{T}\right)_{V} Y, W\right]=g_{M}\left(v \tilde{\nabla}_{X} \mathcal{T}_{V} Y, W\right)-g_{M}\left(\mathcal{T}_{\nu \tilde{\nabla}_{x} V} Y, W\right)-g_{M}\left(\mathcal{T}_{V} h \tilde{\nabla}_{X} Y, W\right) \tag{34}
\end{equation*}
$$

Similarly from eqs. (17) and (14) we have:

$$
\begin{equation*}
g_{M}\left[\left(\tilde{\nabla}_{V} \mathcal{A}\right)_{X} Y, W\right]=g_{M}\left(\hat{\nabla}_{V} \mathcal{A}_{X} Y, W\right)-g_{M}\left(\mathcal{A}_{h \tilde{\nabla}_{V} X} Y, W\right)-g_{M}\left(\mathcal{A}_{X} h \tilde{\nabla}_{V} Y, W\right) \tag{35}
\end{equation*}
$$

In that case, from eqs. (33), (34), and (35) we obtain eq. (31). Thus the proof is completed.

Theorem 2. Let $f:\left(\mathrm{M}, g_{M}\right) \rightarrow\left(N, g_{N}\right)$ be a Riemannian submersion between Riemannian manifolds $\left(M, g_{M}\right)$ and $\left(N, g_{N}\right)$. Let K^{\prime} and \hat{K} be sectional curvatures of N and any fibre $\left(f^{-1}(x), \hat{g}_{x}\right)$, respectively. Sectional curvatures of M with respect to a new type of semisymmetric non-metric connection $\tilde{\nabla}$ are given by:

$$
\begin{gather*}
\tilde{K}(X, V)=g_{M}\left[\left(\tilde{\nabla}_{V} \mathcal{A}\right)_{X} X, V\right]-g_{M}\left[\left(\tilde{\nabla}_{X} \mathcal{T}\right)_{V} X, V\right)-g_{M}\left(\mathcal{A}_{X} V, h \tilde{\nabla}_{V} X\right)- \\
-g_{M}\left(\mathcal{T}_{V} X, \nu \tilde{\nabla}_{V} X\right)-\frac{1}{2} \eta(X) g_{M}\left(\tilde{\nabla}_{V} X, V\right)+\frac{1}{2} \eta\left(h \tilde{\nabla}_{X} X\right) \tag{36}\\
\tilde{K}(U, V)=\hat{K}(U, V)+\left\|\mathcal{T}_{U} V\right\|^{2}-g_{M}\left(\mathcal{T}_{U} U, \mathcal{T}_{V} V\right)+\frac{1}{2} \eta\left(\mathcal{T}_{V} V\right)-\frac{1}{2} \eta\left(\mathcal{T}_{U} V\right) g_{M}(V, U) \tag{37}\\
\tilde{K}(X, Y)=K^{\prime}\left(X^{\prime}, Y^{\prime}\right)-3\left\|\mathcal{A}_{X} Y\right\|^{2}-\frac{1}{2} \eta\left(\mathcal{A}_{X} Y\right) g_{M}(X, Y) \tag{38}
\end{gather*}
$$

where X, Y (and U, V) are orthonormal horizontal (and vertical) vector fields and $\left\{X_{i}, U_{j}\right\}$ is f adaptable frame on $\left(M, g_{M}\right)$.

Proof 7. Since $\tilde{K}(X, V)=g_{M}[\tilde{R}(X, V) V, X]$ changing the roles of X and V with Y and W, respectively, in the eq. (31) we obtain:

$$
\begin{aligned}
& \tilde{K}(X, V)=g_{M}\left[\left(\tilde{\nabla}_{V} \mathcal{A}\right)_{X} X, V\right]-g_{M}\left[\left(\tilde{\nabla}_{X} \mathcal{T}\right)_{V} X, V\right]-g_{M}\left(\mathcal{A}_{X} V, h \tilde{\nabla}_{V} X\right)- \\
& \quad-g_{M}\left(\mathcal{T}_{V} X, v \tilde{\nabla}_{V} X\right)-\frac{1}{2} \eta(X) g_{M}\left(\tilde{\nabla}_{V} X, V\right)+\frac{1}{2} \eta\left(h \tilde{\nabla}_{X} X\right) g_{M}(V, V)
\end{aligned}
$$

Considering that the vector fields U and V are orthonormal vector fields, we get eq.
The eqs. (37) and (38) can be obtained in a similar way.
Theorem 3. Let f : $\left(M, g_{M}\right) \rightarrow\left(N, g_{N}\right)$ be a Riemannian submersion between Riemannian manifolds. Let S^{\prime} and S be Ricci tensors of N and any fibre $\left[f^{-1}(x), \hat{g}_{x}\right]$ for $x \in \mathrm{~N}$, respectively. Ricci tensors of M with respect to a new type of semi-symmetric non-metric connection $\tilde{\nabla}$ are given by

$$
\begin{align*}
& \tilde{S}(U, V)=\hat{S}(U, V)+g_{M}\left(N, \mathcal{T}_{U} V\right)-\frac{1}{2} \eta\left(\mathcal{T}_{U} V\right)+\sum_{i}\left[g_{M}\left[\left(\tilde{\nabla}_{X_{i}} \mathcal{T}\right)_{U} X_{i}, V\right]+\right. \\
& \quad+g_{M}\left(\mathcal{A}_{X_{i}} V, h \tilde{\nabla}_{U} X_{i}\right)+g_{M}\left(\mathcal{T}_{V} X_{i}, v \tilde{\nabla}_{U} X_{i}\right)+\frac{1}{2} \eta\left(X_{i}\right) g_{M}\left(\tilde{\nabla}_{U} X_{i}, V\right)- \\
& \left.-\frac{1}{2} \eta\left(h \tilde{\nabla}_{X_{i}} X_{i}\right) g_{M}(U, V)\right]-\sum_{j}\left[g_{M}\left(\mathcal{T}_{U} U_{j} \mathcal{T}_{V} U_{j}\right)-\frac{1}{2} \eta\left(\mathcal{T}_{U_{j}} V\right) g_{M}\left(U, U_{j}\right)\right] \tag{39}\\
& \tilde{S}(X, Y)=S^{\prime}\left(X^{\prime}, Y^{\prime}\right)^{\circ} f-\frac{1}{2} \eta\left(\mathcal{A}_{X} Y\right)-\frac{1}{2} \eta\left(h \tilde{\nabla}_{X} Y\right)+\sum_{i}\left[3 g_{M}\left(\mathcal{A}_{X_{i}} X, \mathcal{A}_{X_{i}} Y\right)+\right. \\
& \left.+\frac{1}{2} \eta\left(\mathcal{A}_{X_{i}} Y\right) g_{M}\left(X, X_{i}\right)\right]+\sum_{j}\left\{g_{M}\left[\left(\tilde{\nabla}_{X} \mathcal{T}\right)_{U_{j}} Y, U_{j}\right)-g_{M}\left[\left(\tilde{\nabla}_{U_{j}} \mathcal{A}\right)_{X} Y, U_{j}\right]+\right. \\
& \left.\quad+g_{M}\left(\mathcal{A}_{Y} U_{j}, h \tilde{\nabla}_{U_{j}} X\right)+g_{M}\left(\mathcal{T}_{U_{j}} Y, v \tilde{\nabla}_{U_{j}} X\right)+\frac{1}{2} \eta(Y) g_{M}\left(\tilde{\nabla}_{U_{j}} X, U_{j}\right)\right\} \tag{40}
\end{align*}
$$

$$
\begin{align*}
\tilde{S}(U, X)=g_{M}\left(\tilde{\nabla}_{U} N, X\right)+ & \sum_{i}\left\{g_{M}\left[\left(\tilde{\nabla}_{X} \mathcal{A}\right)\left(X_{i}, U\right), X_{i}\right]-g_{M}\left[\left(\tilde{\nabla}_{X_{i}} \mathcal{A}\right)(X, U) X_{i}\right]+\right. \\
+ & \left.\frac{1}{2} \eta(U) g_{M}\left(\tilde{\nabla}_{X} X_{i}, X_{i}\right)-\frac{1}{2} \eta(U) g_{M}\left(\tilde{\nabla}_{X_{i}} X, X_{i}\right)+g_{M}\left(\mathcal{T}_{U} X_{i},\left[X, X_{i}\right]\right)\right\}- \\
& -\sum_{j}\left\{g_{M}\left[\left(\tilde{\nabla}_{U_{j}} \mathcal{T}\right)_{U} U_{j}, X\right]\right\} \tag{41}
\end{align*}
$$

where $U, V \in \chi^{\mathrm{v}}(M) ; X, Y \in \chi^{\mathrm{h}}(M)$, and $\left\{X_{i}, U_{j}\right\}$ is f - adaptable frame on $\left(M, g_{M}\right)$.
Proof 8. Let us first give the proof of (39). In this case, Ricci tensor of M with respect to a new type of semi-symmetric non-metric connection $\tilde{\nabla}$ is defined by:

$$
\begin{equation*}
\tilde{S}(U, V)=\sum_{i} \tilde{R}\left(X_{i}, U, X_{i}, V\right)-\sum_{j} \tilde{R}\left(U_{j}, U, V, U_{j}\right) \tag{42}
\end{equation*}
$$

From eq. (31), we have:

$$
\sum_{i} \tilde{R}\left(X_{i}, U, X_{i}, V\right)=\sum_{i}\left\{\begin{array}{l}
g_{M}\left[\left(\tilde{\nabla}_{X_{i}} \mathcal{T}\right)_{U} X_{i}, V\right]+g_{M}\left(\mathcal{A}_{X_{i}} V, h \tilde{\nabla}_{U} X_{i}\right)+g_{M}\left(\mathcal{T}_{V} X_{i}, v \tilde{\nabla}_{U} X_{i}\right)+ \tag{43}\\
+\frac{1}{2}\left[\eta\left(X_{i}\right) g_{M}\left(\tilde{\nabla}_{U} X_{i}, V\right)-\eta\left(h \tilde{\nabla}_{X_{i}} X_{i}\right) g_{M}(U, V)\right]
\end{array}\right.
$$

On the other hand, from eq. (25), we get:

$$
\sum_{i} g_{M}\left[\tilde{R}\left(U_{j}, U\right) V, U_{j}\right]=\sum_{j}\left\{\begin{array}{l}
g_{M}\left[\hat{R}\left(U_{j}, U\right) V, U_{j}\right]-g_{M}\left(\mathcal{T}_{U_{j}} U_{j} \mathcal{T}_{U} V\right)+ \tag{44}\\
+g_{M}\left(\mathcal{T}_{U} U_{j}, \mathcal{T}_{U_{j}} V\right)-\frac{1}{2} \eta\left(\mathcal{T}_{U_{j}} V\right) g\left(U, U_{j}\right)
\end{array}\right\}+\frac{1}{2} \eta\left(\mathcal{T}_{U} V\right)
$$

So, if eqs. (43) and (44) are substituted in eq. (42), the proof is complete.
Other equations can be obtained in a similar way.
Corollary 2. Let $f:\left(M, g_{M}\right) \rightarrow\left(N, g_{N}\right)$ be a Riemannian submersion between Riemannian manifolds (M, g_{M}) and (N, g_{N}). Let τ^{\prime} and $\hat{\tau}$ be scalar curvatures of N and any fibre [$\left.f^{-1}(x), \hat{g} x\right]$ for $x \in N$, respectively. Scalar curvature of M with respect to a new type of semisymmetric non-metric connection $\tilde{\nabla}$ is given by:

$$
\begin{aligned}
\tilde{\tau}= & \hat{\tau}+\tau^{\prime} \circ f-\sum_{i} \eta\left(h \tilde{\nabla}_{X_{i}} U_{j} X_{i}\right)+\sum_{i, j}\left\{2 g_{\mathrm{M}}\left[\left(\tilde{\nabla}_{X_{i}} \mathcal{T}\right)_{U_{j}} X_{i}, U_{j}\right]+2 g_{\mathrm{M}}\left(A_{X_{i}} U_{j}, h \nabla_{U_{j}} X_{i}\right)+\right. \\
& \left.+2 g_{\mathrm{M}}\left(\mathcal{T}_{U_{j}} X_{i}, v \tilde{\nabla}_{U_{j}} X_{i}\right)+\eta\left(X_{i}\right) g_{M}\left(\tilde{\nabla}_{U_{j}} X_{i}, U_{j}\right)+3 g_{M}\left(\mathcal{A}_{X_{i}} U_{j}, \mathcal{A}_{X_{i}} U_{j}\right)\right\}-\eta(N)
\end{aligned}
$$

where X, Y (and U, V) are orthonormal horizontal (and vertical) vector fields and $\left\{X_{i}, U_{j}\right\}$ is f adaptable frame on $\left(M, g_{M}\right)$.

References

[1] O'Neill, B., The Fundamental Equations of a Submersion, Michigan Math. J., 13 (1966), 4, pp. 459-469
[2] Gray, A., Pseudo-Riemannian Almost Product Manifolds and Submersions, J. Math. Mech., 16 (1967), 7, pp. 715-737
[3] Akyol, M. A., Beyendi, S., Riemannian Submersions Endowed with a Semi-Symmetric Non-Metric Con-Nection, Konuralp J. Math., 6 (2018), 1, pp. 188-193
[4] Sahin, B., Riemannian Submersions, Riemannian Maps in Hermitian Geometry, and their Applications, Academic Press, (2017)
[5] Demir, H., Sari ,R., Riemannian Submersions with Quarter-Symmetric Non-Metric Connection, Journal Engine.Tech. Appl. Sci., 6 (2021), 1, pp. 1-8
[6] Demir, H., Sari, R., Riemannian Submersions Endowed with a Semi-Symmetric Metric Connection, Tbilisi Centre for Mathematical Sciences, 10 (2022), pp. 99-108
[7] Narita, F., Riemannian Submersion with Isometric Reflections with Respect to the Fibers, Kodai Math. J., 16 (1993), 3, pp. 416-427
[8] Sahin, B., Riemannian Submersions from Almost Hermitian Manifolds, Taiwan. Math., 17 (2013), 2, pp. 629-659
[9] Friedmann A., Schouten J. A., Uber die Geometrie der Halbsymmetriscen Ubertragungen, Math. Zeitschr., 21 (1924), Dec., pp. 211-223
[10] Hayden, H. A., Subspaces of A space with Torsion, Proc. London Math. Soc., 34 (1932), 1, pp. 27-50
[11] Yano, K., On Semi-Symmetric Metric Connection, Revue Roumaine de Math., Pure et Appliquées, 15 (1970), pp. 1579-1586
[12] Agashe, N. S., Chafle, M. R., A Semi-Symmetric Non-Metric Connection on a Riemannian Manifold, Indian J., Pure Appl. Math., 23 (1992), pp. 399-409
[13] Sengupta, J., et al., On a Type of Semi-Symmetric Non-Metric Connection on a Riemannian Manifold, Indian J. pure appl. Math., 31 (2000), 12, pp. 1659-1670
[14] Chaubey, S. K., Yildiz, A., Riemannian Manifolds Admitting a New Type of Semi-Symmetric NonMetric Connection, Turk. J. Math., 43 (2019), 4, pp. 1887-1904
[15] Pak, E., On the Pseudo-Riemannian Spaces, J. Korean Math. Soc., 6 (1969), 1, pp. 23-31
[16] Andonie, O. C., Smaranda, D., Certaines Connexions Semi Symetriques, Tensor, 31 (1977), 1, pp. 8-12
[17] Nirmala, S., et al, A Semi-Symmetric Non-Metric Connection on a Riemannian Manifold, Indian J. Pure Appl. Math., 23 (1992), 6, pp. 399-409
[18] Ozgur, C., Sular, S., Warped Products with a Semi-Symmetric Non-Metric Connection, Arab. J. Sci. Eng., 36 (2011), Apr., pp. 461-473
[19] De, U. C., et al., A Special Type of Semi-Symmetric Non-Metric Connection on a Riemannian Manifold, Fac. Ser. Math., 31 (2016), 2, pp. 529-541
[20] Falcitelli, M., eta l., Riemannian Submersions and Related Topics, World Scientific, (2004)
[21] Gundmundson, S., An Introduction to Riemannian Geometry, Lecture Notes, University of Lund, Faculty of Science, (2014)

[^0]: * Corresponding author, e-mail: esrakrts4422@gmail.com

