THERMAL SCIENCE

International Scientific Journal

Authors of this Paper

External Links

A VARIATIONAL PRINCIPLE FOR FRACTAL KLEIN-GORDON EQUATION

ABSTRACT
This paper studies the Klein-Gordon equation and two modifications in an infinite Cantor set and a fractal space-time. Their variational formulations are established and discussed, and the spatio-temporal discontinuity requires both spatio-fractal derivative and temporal fractal derivative for practical applications. Some basic properties of the local fractional derivative and the two-scale fractal derivative are elucidated, and the derivation of the Euler-Lagrange equation is illustrated.
KEYWORDS
PAPER SUBMITTED: 2021-12-20
PAPER REVISED: 2022-07-20
PAPER ACCEPTED: 2022-07-21
PUBLISHED ONLINE: 2023-06-11
DOI REFERENCE: https://doi.org/10.2298/TSCI2303803C
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2023, VOLUME 27, ISSUE Issue 3, PAGES [1803 - 1810]
REFERENCES
  1. Aryan, S., Existence of Two-Solitary Waves with Logarithmic Distance for the Non-linear Klein-Gordon Equation, Communications in Contemporary Mathematics, 24 (2022), 1, 2050091
  2. Sun, J. S., Approximate Analytical Solution of the Fractal Klein-Gordon Equation, Thermal Science, 25 (2021), 2, pp. 1489-1494
  3. He, J. H., El-Dib, Y. O., The Reducing Rank Method to Solve Third-Order Duffing Equation with the Homotopy Perturbation, Numerical Methods for Partial Differential Equations, 37 (2021), 2, pp. 1800- 1808
  4. He, J. H., El-Dib, Y. O., The Enhanced Homotopy Perturbation Method for Axial Vibration of Strings, Facta Universitatis Series: Mechanical Engineering, 19 (2021), 4, pp. 735 - 750
  5. Feng, G. Q., He's Frequency Formula to Fractal Undamped Duffing Equation, Journal of Low Frequency Noise Vibration and Active Control, 40 (2021), 4, pp. 1671-1676
  6. Wang, K. L., Wei, C. F., A Powerful and Simple Frequency Formula to Non-linear Fractal Oscillators, Journal of Low Frequency Noise Vibration and Active Control, 40 (2021), 3, pp. 1373-1379
  7. He, J. H., et al., Forced Non-Linear Oscillator in a Fractal Space, Facta Universitatis Series: Mechanical Engineering, 20 (2022), 1, pp. 1-20
  8. He, C. H., Liu, C., A Modified Frequency-Amplitude Formulation for Fractal Vibration Systems, Fractals, 30 (2022), 3, 2250046
  9. He, J.-H., et al. Periodic Property and Instability of a Rotating Pendulum System. Axioms, 10 (2021), 3, 191
  10. He, C. H., et al., Hybrid Rayleigh-Van der Pol-Duffing Oscillator (HRVD): Stability Analysis and Controller, Journal of Low Frequency Noise, Vibration & Active Control, 41 (2022), 1, pp. 244-268
  11. Wang, K. J., Wang, G. D., Gamma Function Method for the Non-Linear Cubic-Quintic Duffing Oscillators, Journal of Low Frequency Noise, Vibration & Active Control, 41 (2022), 1, pp. 216-222
  12. Ma, H. J., Simplified Hamiltonian-Based Frequency-Amplitude Formulation for Nonlinear Vibration Systems, Facta Universitatis Series: Mechanical Engineering, 20 (2022), 2, pp. 445-455
  13. Wang, K. L., Wei, C. F., A Powerful and Simple Frequency Formula to Non-Linear Fractal Oscillators, Journal of Low Frequency Noise Vibration and Active Control, 40 (2021), 3, pp. 1373-1379
  14. Cuzinatto, R. R., et al. Non-Commutativity and Non-Inertial Effects on a Scalar Field in a Cosmic String Space-Time: I. Klein-Gordon Oscillator, Classical and Quantum Gravity, 39 (2022), 7, 075006
  15. Shen, Y., et al., Convergence of Adaptive Non-Conforming Finite Element Method for Stokes Optimal Control Problems, Journal of Computational and Applied Mathematics, 412 (2022), Oct., 114336
  16. He, C. H., A Variational Principle for a Fractal Nano/Microelectromechanical (N/MEMS) System, International Journal of Numerical Methods for Heat & Fluid Flow, 33 (2022), 1, pp. 351-359
  17. He, J.-H., A Fractal Variational Theory for One-Dimensional Compressible Flow in a Microgravity Space, Fractals, 28 (2020), 2, 20500243
  18. He, J.-H., On the Fractal Variational Principle for the Telegraph Equation, Fractals, 29 (2021), 1, 2150022
  19. Wang, Y., et al., A Variational Formulation Anisotropic Wave Travelling in a Porous Medium, Fractals, 27 (2019), 4, 1950047
  20. Wang, Y., et al., A Fractal Derivative Model for Snow's Thermal Insulation Property, Thermal Science. 23 (2019), 4, pp. 2351-2354
  21. Wang, K. J., Generalized Variational Principle and Periodic Wave Solution to the Modified Equal Width-Burgers Equation in Non-linear Dispersion Media, Physics Letters A, 419 (2021), 17, 127723
  22. Wang, K. J., Zhang, P. L., Investigation of the Periodic Solution of the Time-Space Fractional Sasa-Satsuma Equation Arising in the Monomode Optical Fibers, EPL, 137 (2022), 6, 62001
  23. Wang, K. J., Zhu, H. W., Periodic Wave Solution of the Kundu-Mukherjee-Naskar Equation in Birefringent Fibers via the Hamiltonian-Based Algorithm, EPL, 139 (2021), 3, 35002
  24. Wang, K J., Wang, J. F., Generalized Variational Principles of the Benney-Lin Equation Arising in Fluid Dynamics, EPL, 139 (2021), 3, 39006
  25. Wang, K. J., Liu, J. H., Periodic Solution of the Time-Space Fractional Sasa-Satsuma Equation in the Monomode Optical Fibers by the Energy Balance Theory, EPL, 138 (2022), 2, 25002
  26. Wang, K. L., Exact Solitary Wave Solution for Fractal Shallow Water Wave Model by He's Variational Method, Modern Physics Letters B, 36 (2022), 7, 2150602
  27. Wang, K. L., Solitary Wave Solution of Non-linear Bogoyavlenskii System by Variational Analysis Method, International Journal of Modern Physics B, 36 (2022), 2, 2250015
  28. Wang, K. L., New Variational Theory for Coupled Non-linear Fractal Schrodinger System, International Journal of Numerical Methods for Heat & Fluid Flow, 32 (2022), 2, pp. 589-597
  29. Khan, Y., A Variational Approach for Novel Solitary Solutions of FitzHugh-Nagumo Equation Arising in the Non-linear Reaction-Diffusion Equation, International Journal of Numerical Methods for Heat and Fluid Flow, 31 (2020), 4, 1104-1109
  30. Khan, Y., Fractal Modification of Complex Ginzburg-Landau Model Arising in the Oscillating Phenomena, Results in Physics, 18 (2020), Sept., 103324
  31. Zuo, Y.-T., Liu, H.-J., Fractal Approach to Mechanical and Electrical Properties of Graphene/Sic Composites, Facta Universitatis-Series Mechanical Engineering, 19 (2021), 2, pp. 271-284
  32. Tian, D., He, C. H., A Fractal Micro-Electromechanical System and Its Pull-In Stability, Journal of Low Frequency Noise Vibration and Active Control, 40 (2021), 3, pp. 1380-1386
  33. Cao, X.-Q., et al. Variational Theory for 2+1 Dimensional Fractional Dispersive Long Wave Equations, Thermal Science, 25 (2021), 2B, pp. 1277-1285
  34. Alex, E. Z., et al., Equivalent Power-Form Representation of the Fractal Toda Oscillator, Fractals, 29 (2020), 2, 21500341
  35. Alex, E. Z., et al., He's Frequency-Amplitude Formulation for Non-Linear Oscillators Using Jacobi Elliptic Functions, Journal of Low Frequency Noise Vibration and Active Control, 29 (2021), 2, 2150034
  36. He, J.-H., Seeing with a Single Scale is Always Unbelieving: From magic to two-scale fractal, Thermal Science, 25 (2021), 2B, pp. 1217-1219
  37. He, J.-H. When Mathematics Meets Thermal Science: The Simpler is the Better, Thermal Science, 25 (2021), 3, pp. 2039-2042
  38. Jia, Z. J., et al., Variational Principle for Unsteady Heat Conduction Equation, Thermal Science, 18 (2014), 3 , pp. 1045-1047
  39. Wang, K. L., Wang, K. J., A New Analysis for Klein-Gordon Model with Local Fractional Derivative, Alexandria Engineering Journal, 59 (2020), 5, pp. 3313-3309
  40. Wang, K. J., On New Abundant Exact Traveling Wave Solutions to the Local Fractional Gardner Equation Defined on Cantor Sets, Mathematical Methods in the Applied Sciences, 45 (2022), 4, pp. 1904-1915
  41. Yang, X. J., et al., On Local Fractional Operators View of Computational Complexity: Diffusion and Relaxation Defined on Cantor Sets, Thermal Science, 20 (2016), Suppl. 3, pp. S755-S767
  42. Yang, X. J., et al., Local Fractional Similarity Solution for the Diffusion Equation Defined on Cantor Sets, Applied Mathematics Letters, 47 (2015), Sept., pp. 54-60
  43. He, J. H., et al., A Fractal Modification of Chen-Lee-Liu Equation and Its Fractal Variational Principle, International Journal of Modern Physics B, 35 (2021), 21, 2150214
  44. Anjum, N., et al. Two-Scale Fractal Theory for the Population Dynamics, Fractals, 29 (2021), 7, 2150182
  45. Wei, C. F., Two-Scale Transform for 2-D Fractal Heat Equation in a Fractal Space, Thermal Science, 25 (2021), 3, pp. 2339-2345
  46. Qian, M. Y., He, J. H., Two-Scale Thermal Science for Modern Life -Making the Impossible Possible, Thermal Science, 26 (2022), 3B, pp. 2409-2412
  47. He, J. H., et al., Variational Approach to Fractal Solitary Waves, Fractals, 29 (2021), 7, 2150199
  48. He, J. H., et al., On a Strong Minimum Condition of a Fractal Variational Principle, Applied Mathematics Letters, 119 (2021), Sept., 107199
  49. Wang, S. Q., He, J. H., Variational Iteration Method for Solving Integro-Differential Equations, Physics letters A, 367 (2007), 3, pp. 188-191
  50. Wang, S. Q., A Variational Approach to Non-Linear Two-Point Boundary Value Problems, Computers & Mathematics with Applications, 58 (2009), 11, pp. 2452-2455
  51. Yu, W., et al., Tensorizing GAN with High-Order Pooling for Alzheimer's Disease Assessment, IEEE Transactions on Neural Networks and Learning Systems, 33 (2021), 9, 4945-4959
  52. You, S., et al., Fine Perceptive Gans for Brain MR Image Super-Resolution in Wavelet Domain, IEEE transactions on neural networks and learning systems, On-line first, doi.org/10.1109/TNNLS. 2022.3153088, 2022
  53. Hu, S., et al., Bidirectional Mapping Generative Adversarial Networks for Brain MR to PET Synthesis, IEEE Transactions on Medical Imaging, 41 (2021), 1, pp. 145-157
  54. Yu, W., et al., Morphological Feature Visualization of Alzheimer's Disease via Multidirectional Perception GAN, IEEE Transactions on Neural Networks and Learning Systems, On-line first, doi.org/10.1109/TNNLS.2021.3118369, 2021

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence