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This paper studies the Klein-Gordon equation and two modifications in an infi-
nite Cantor set and a fractal space-time. Their variational formulations are es-
tablished and discussed, and the spatio-temporal discontinuity requires both spa-
tio-fractal derivative and temporal fractal derivative for practical applications. 
Some basic properties of the local fractional derivative and the two-scale fractal 
derivative are elucidated, and the derivation of the Euler-Lagrange equation is 
illustrated.  
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Introduction 

The Klein-Gordon equation can describe a solitary wave, it can be written [1, 2]: 
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where , ,  and  are constants.  
Equation (1) is also a useful model for string vibration [3, 4]. Introducing a complex 

variable   defined: 

 x ct = −  (2) 

where c is a constant. By the chain rule, we have: 
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So we can convert eq. (1) into the following ordinary differential equation:  
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This is the well-known Duffing equation [5-13] when   = 0, so eq. (1) is also called 
as Klein-Gordon oscillator [14]. In this paper we want to study eq. (1) by the variational theo-
ry.  

The variational theory plays a significant role in thermal science and mathematics, it 
is the cornerstone of various numerical methods, e.g. the finite element method [15], and var-
ious analytical methods, e.g., the Ritz method, and the variational iteration method. Recently 
the fractal variational theory has been attracted much attention due to their feasibility for the 
establishment a real mathematical model for discontinuous problems [16].  

The fractal variational theory is extensively useful for porous medium problems or 
the unsmooth boundary problems. Starting from the pioneering ideas going back to He [17, 
18], Wang et al. [19, 20], Wang et al. [21-25], Wang et al. [26-28], Khan [29, 30], Zuo [31], 
Tian [32], Cao et al. [33], and Alex et al. [34, 35], the two-scale fractal method has become a 
fully matured theory. An introduction to its basic knowledge is referred in [36, 37].  

It is well-known that the variational principle has the global property, that is the ap-
proximate solution obtained by the variational principle is valid for the whole solution proper-
ty. This paper will study the fractal modifications of eq. (1) and their variational formulations.  

Variational principle for Klein-Gordon equation 

The variational formulation for eq. (1) can be easily obtained by the semi-inverse 
method [38], which reads: 

 ( ) d dJ L t x =    (4) 

where the Lagrange function is: 
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The Euler-Lagrange equation of eq. (4) is: 
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It is easy to calculate the following terms:  
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According to eq. (6), we have: 
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It is obvious that eq. (8) is equivalent to eq. (1).  
The variatl formulation for eq. (3) is: 
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Modified Klein-Gordon equation  

with local fractional derivative  

Wang and Wang  [39] studied the following Klein-Gordon model with local frac-
tional derivatives: 

 
2 2

2 3
2 2

d d 0
d dt x





 
  − − − − =  (10) 

and established the following variational principle [39]: 

 ( ) d dJ L t x =   
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where dαω/dtα is the local fractal fractional derivative [40-42].  
Remark 1. When time is of the local property, the space must have the local property 

as well eq. (10) has to be modified: 
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To understand this spatio-temporal correlation [43, 44], we consider a tree’s growth. 
We assume that the tree stops growing at night, so its growth is spatio-temporally discontinu-
ous, see fig. 1.  

 
Figure 1. A tree’s growing up 

Remark 2. The local fractional calculus is established in an infinite Cantor set, it has 
the local property [40-42].  
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The variational principle for eq. (12) is: 

 
2 2

2 3 41 d 1 d 1 1 1( ) d d ,
2 2 2 3 4d d

J L t x L
t x

 
 

 

 
   

   
= = − + − − −      

   
  (13) 

The Euler-Lagrange equation of eq. (13) is: 
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It is easy to calculate the following components: 
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So the Euler-Lagrange equation is: 

2 3d d d d d d =0
d d d d d dt x

L L L

t x t t x x 

     

     

 
  

  

         
− − = − − − − − −                      

 (16) 

It is equivalent to eq. (12).  

Modified Klein-Gordon equation with  

two-scale fractal derivative  

The tree grows up every day, and its growth ratio is continuous when measured on a 
scale of 24 hours, however, when we measure it on a scale 12 hours, it becomes discontinu-
ous. A differential equation model can depict its growth on a large scale, but it can reveal the 
effect of the length of day or sunlight time on its growth. The two-scale fractal theory uses 
two different scales to measure the same object, the large one follows the differential equation 
model, and the smaller one adopts a model with the two-scale fractal derivative. The two-
scale fractal modification of eq. (12) is:  
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The fractal derivative is [36, 37]:  
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where t  is the length of day or sunlight time per day, ,x u t =   u  – the average velocity on 
the large scale,   – the two-scale fractal dimensions. If the sunlight time is 8 hours each day, 
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8/24 1/3. = =  For a complete interpretation of the concept of the two-scale fractal dimen-
sions, audience is referred to [36, 37].  

The fractal variational principle of eq. (4) is: 

 ( ) d dJ L t x  =   
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The stationary condition of eq. (20) reads: 
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It is easy to calculate the following components: 
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So the Euler-Lagrange equation of eq. (20) is: 
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This is eq. (17).  
Using the two-scale transform [45]: 

 T t=   (24) 

 X x=   (25) 
Equation (13) becomes: 
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This is the classical Klein-Gordon model on a large scale, its variational principle is: 

 ( ) d dJ L T X =   
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The stationary condition of eq. (27) is: 
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It is easy to calculate the following components: 
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So the Euler-Lagrange equation of eq. (27) is: 
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Equation (29) leads to eq. (26) easily.  

Conclusion 

This paper gives a heuristic interpretation of the fractal variational theory in view of 
the two-scale fractal theory, the large scale follows the continuum model, while the smaller 
one reveals the discontinuity of the studied problem [46]. A fractal modification of the Weier-
strass function can be constructed to judge the strong minimum of a fractal variational princi-
ple as that discussed in [47, 48], the present method can be extended to integro-differential 
equations with fractal derivatives [49]; boundary value problems with fractal derivatives [50] 
and image processing [52-54].  
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