THERMAL SCIENCE
International Scientific Journal
VARIATIONAL PRINCIPLE FOR A GENERALIZED RABINOWITSCH LUBRICATION
ABSTRACT
This paper adopts Rotem and Shinnar’s modification of the Rabinowitsch fluid model for the one-dimensional non-Newtonian lubrication problem, a variational principle is established by the semi-inverse method, and a generalized Reynolds-type equation is obtained. This article opens a new avenue for the establishment of Reynolds-type equation of complex lubrication problems.
KEYWORDS
PAPER SUBMITTED: 2021-12-01
PAPER REVISED: 2022-03-31
PAPER ACCEPTED: 2022-04-04
PUBLISHED ONLINE: 2022-05-22
THERMAL SCIENCE YEAR
2023, VOLUME
27, ISSUE
Issue 3, PAGES [2001 - 2007]
- He, J.H., et al. The Maximal Wrinkle Angle During the Bubble Collapse and Its Application to the Bubble Electrospinning, Frontiers in Materials, 8(2022), Feb., 800567
- Qian, M.Y. and He, J.H. Collection of polymer bubble as a nanoscale membrane, Surfaces and Interface, 28(2022), Feb., 101665
- He, J.H., et al. Insights into Partial Slips and Temperature Jumps of a Nanofluid Flow over a Stretched or Shrinking Surface, Energies, 14(2021), No.20, 6691
- Eldabe, N.T., et al. Effect of induced magnetic field on non-Newtonian nanofluid Al2O3 motion through boundary-layer with gyrotactic microorganisms, Thermal Science, 26(2022), No.1, pp.411-422
- He, J.H., et al. Nonlinear EHD Instability of Two-Superposed Walters' B Fluids Moving through Porous Media, Axioms, 10(2021), No.4, 258
- He, J.H., et al. Nonlinear instability of two streaming-superposed magnetic Reiner-Rivlin Fluids by He-Laplace method, Journal of Electroanalytical Chemistry, 895(2021), Aug., 115388
- Talebzadegan, M., et al. Melting process modelling of Carreau non-Newtonian phase change material in dual porous vertical concentric cylinders, Thermal Science, 26(2021), No. 6, pp.4283-4293
- He, J.H., et al. Insight into the Significance of Hall Current and Joule Heating on the Dynamics of Darcy-Forchheimer Peristaltic Flow of Rabinowitsch Fluid, Journal of Mathematics, 2021, Oct., 3638807
- Zuo YT. Effect of SiC particles on viscosity of 3-D print paste: A fractal rheological model and experimental verification, Thermal Science 25(3B)(2021):2405-2409
- Liang, Y.H. and Wang, K.J. A new fractal viscoelastic element: Promise and Applications to Maxwell-Rheological Model, Thermal Science, 25(2021), No.2, pp.1221-1227
- Rahul, A.K. and Rao, P.S. Rabinowitsch fluid flow with viscosity variation: Application of porous rough circular stepped plates. Tribology International, 154(2021), 106635.
- Boubendir, S., et al. Hydrodynamic self-lubricating journal bearings analysis using Rabinowitsch fluid lubricant. Tribology International, 140(2019), 105856.
- Lin, J.R., et al. Derivation of two-dimensional non-Newtonian Reynolds equation and application to power-law film slider bearings: Rabinowitsch fluid model. Applied Mathematical Modelling, 40(2016), pp. 8832-8841.
- Lin, J.R. Now-Newtonian effects on the dynamic characteristics of one-dimensional slider bearings: Rabinowitsch fluid model. Tribology Letters, 10(2001), No.4, pp. 237-243.
- Singh, U.P. Mathematical analysis of effects of surface roughness on steady performance of hydrostatic thrust bearings lubricated with Rabinowitsch Type Fluids. Journal of Applied Fluid Mechanics, 13(2020), No.4, pp. 1339-1347.
- Boldyrev, Y.Y. Variational rayleigh problem of gas lubrication theory: low compressibility numbers. Fluid Dynamics, 53(2018), pp. 471-478.
- Walicka, A., et al. Curvilinear squeeze film bearing with rough surfaces lubricated by a Rabinowitsch-Rotem-Shinnar fluid. Applied Mathematical Modelling, 40(2016), pp. 7916-7927.
- He, J.H. Variational principle for non-Newtonian lubrication: Rabinowitsch fluid model. Applied Mathematics and Computation, 157(2004), No.1 ,pp. 281-286.
- Rabinowitsc, B. Über die viskosität und elastizität von solen. Zeitschrift Fur Physikalische Chemie, 145(1929), pp. 1-26.
- Rotem, Z., et al. Non-Newtonian flow between parallel boundaries in linear movements. Chemical Engineering Science, 15(1961), pp. 130-143.
- Yao, S.W. Variational principle for non-linear fractional wave equation in a fractal space. Thermal Science, 25(2021), No.2, pp. 1243-1247.
- Ling, W.W., et al. Variational theory for a kind of non-linear model for water waves. Thermal Science, 25(2021), No.2, pp.1249-1254.
- Cao, X.Q., et al. Variational theory for 2+1 dimensional fractional dispersive long wave equations. Thermal Science, 25 (2021), No.2, pp.1277-1285.
- Cao, X.Q., et al. Variational principle for 2+1 dimensional Broer-Kaup equations with fractal derivatives. Fractals, 28(2020), No.7, 2050107.
- Wang, K. J. and Wang, G. D., Study on the nonlinear vibration of embedded carbon nanotube via the Hamiltonian-based method, Journal of Low Frequency Noise, Vibration & Active Control, 41 (2022), No.1, pp.112-117.
- Wang,K.J. and Zhu, H.W., Periodic wave solution of the Kundu-Mukherjee-Naskar equation in birefringent fibers via the Hamiltonian-based algorithm, EPL, 2021, doi.org/10.1209/0295-5075/ac3d6b.
- Wang K J, Generalized variational principle and periodic wave solution to the modified equal width-Burgers equation in nonlinear dispersion media, Physics Letters A, 2021, 419 (17):127723. doi.org/10.1016/j.physleta.2021.127723.
- Wang, K.J., and Wang, J.F., Generalized variational principles of the Benney-Lin equation arising in fluid dynamics, EPL, 2021, doi.org/10.1209/0295-5075/ac3cce.
- Wang, K.L., Exact solitary wave solution for fractal shallow water wave model by He's variational method, Modern Physics Letters B, (2022)2150602,doi: doi.org/10.1142/S0217984921506028.
- Wang, K.L., Solitary wave solution of nonlinear Bogoyavlenskii system by variational analysis method, International Journal of Modern Physics B, (2022)2250015
- Wang, K.L., New variational theory for coupled nonlinear fractal Schrodinger system, International Journal of Numerical Methods for Heat & Fluid Flow, 32(2)(2022)589-597.
- He, J.H. Generalized variational principles for buckling analysis of circular cylinders. Acta Mechanica, 231(2020), No.3, 899-906.
- He, J.H., et al., Variational approach to fractal solitary waves, Fractals, 29(2021), No.7, 2150199
- He, J.H., et al., Evans model for dynamic economics revised, AIMS mathematics, 6(2021), No.9, pp.9194-9206