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This paper adopts Rotem and Shinnar’s modification of the Rabinowitsch fluid 
model for the 1-D non-Newtonian lubrication problem, a variational principle is 
established by the semi-inverse method, and a generalized Reynolds-type equa-
tion is obtained. This article opens a new avenue for the establishment of Reyn-
olds-type equation of complex lubrication problems.  
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Introduction 

Non-Newtonian fluids appear everywhere in engineering applications, for examples, 

polymer solutions [1, 2], nanofluids [3, 4] , Walters' B fluid [5], Reiner-Rivlin fluid [6], phase 

change material [7], and peristaltic flow [8]. Zuo [9] suggested a fractal rheological model for 

non-Newtonian fluids, and Liang and Wang [10] gave a fractal viscoelastic element for vari-

ous non-Newtonian fluids.  

The Rabinowitsch fluid model is widely 

used in the non-Newtonian lubrication theory 

[11-18]. This paper considers a 1-D slide bear-

ing as illustrated in fig. 1. 

The Rabinowitsch 1929 model assumes 

the following constitutive relationship [19]: 
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where sxz is the shear stress, u – the velocity, h 

– the viscosity coefficient, and a – the Rab-

inowitsch parameter for non-Newtonian proper-

ty. 

A more generalized modification of eq. 

(1) was suggested by Rotem and Shinnar in the 

form [20]: 
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Figure 1. Geometric structure of a sliding 
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where ( 1 )na n N  are constants. In this paper we adopt the following one with a cubic-

quinary non-linearity: 
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where a1 and a2 are Rabinowitsch parameters. 

Variational formulation 

The governing equations for 1-D non-Newtonian lubrication can be expressed [18]: 
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where u, w are velocities in x- and z-directions, respectively, and p – the pressure.  

Equation (1) is for the mass conservation, while eqs. (5) and (6) are the moment 

conservation in x- and z-directions, respectively.  

The boundary conditions are: 

 0: , 0z u U w    (7) 

 : 0,z h u w W    (8) 

In this section, we search for a variational formulation for the aforementioned lu-

brication problem. The variational principle is widely used in engineering to establish a 

needed differential model for practical problems. Various variational formulations were ap-

peared in literature for various problems, for examples, water waves [21-24], non-linear vi-

bration system [25, 26], Burgers equation [27], Benney-Lin equation [28], solitary waves 

[29-31]. In this paper, the semi-inverse method [32-34] is applied to establish a needed vari-

ational formulation. 

According to the semi-inverse method [32-34], we construct the following trial-fun-

ctional:  
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where F is unknown yet, it will be determined step by step. Alternative approaches to con-

struction of the trial-functional are available in [35, 36]. 

The stationary condition with respect to p is eq. (4), and we obtain the following two 

equations with respect to u and w, respectively:  
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where /F u   is the variational derivative defined: 
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In view of eqs. (5) and (6), we can convert eqs. (10) and (11) into the following 

forms: 
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We, therefore, can determine F:  
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where f is unknown yet. Now eq. (9) becomes: 
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Now the stationary condition with respect to xz  is: 
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By eq. (3), we have: 
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From eq. (18), we have: 
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Equation (16) is updated: 
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By a similar derivation as given in [18], the boundary integral can be incorporated. 

We assume that: 
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where g is unknow. The natural conditions are: 
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In view of the boundary conditions of eqs. (7) and (8), we have: 
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From eqs. (24) and (25), we obtain: 

 [ ( ) (0)] xzg W h W p U     (26) 

We finally obtain the following generalized variational principle: 
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Proof. The Lagrange function of eq. (27) is: 
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and the stationary conditions of eq. (27) are: 
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where   implies to u, or w, or p or sxz, and its subscription implies the partial derivative, e.g. 
= / .x x    The stationary conditions with respective to u, w, p, and sxz are given, respective-

ly: 

 + =0xz p

z x

 


 
 (30) 

 =0
p

z




 (31) 



Ma, H.: Variational Principle for a Generalized Rabinowitsch Lubrication 
THERMAL SCIENCE: Year 2023, Vol. 27, No. 3A, pp. 2001-2007 2005 

 0
u w

x z

 
  
 

 (32) 

 3 5
1 2

1
( )+ 0xz xz xz

u
a a

z
  




   


 (33) 

It is obvious that eqs. (30)-(33) are the governing equations.  

Reynolds-type equation 

Similar to the derivation as given in [18], we obtain the following constrained varia-

tional principle: 
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which is subject to eqs. (3), (4), and (6).  

Integrating eq. (5) with respect to z and identifying the integration constant, we 

have: 
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Substituting eq. (35) into eq. (34), and integrating from 0z   to ,z h  we have: 
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Now the stationary condition of eq. (36) is: 
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Note that: 
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Finally we obtain the following Reynolds-type equation: 
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Discussion and conclusion 

In case a2 = 0, eq. (37) reduces to: 
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This is same as those in [14, 18]. When a1 = a2 = 0, eq. (37) reduces to the classic 

Reynolds equation [14, 18], which is: 
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For the modification of eq. (2) given by Rotem et al. [20], the Reynolds-type equa-

tion can be derived by a similar manner discussed above, and it reads: 
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Lubrication arises everywhere including many food processes, and the present theo-

retical analysis is helpful to establish a mathematical model and design an optimal lubrication 

system. 

To be concluded, this paper suggests a new approach to the establishment of a 

Reynolds-type equation for a complex lubrication problem.  
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