THERMAL SCIENCE

International Scientific Journal

Authors of this Paper

External Links

FABRIC COLOR FORMULATION USING A MODIFIED KUBELKA-MUNK THEORY CONSIDERING THERMAL EFFECT

ABSTRACT
The Kubelka-Munk function is simple but it ignores the film's thickness, so its applications are greatly limited. Though the exact relationship between the Kubelka-Munk function and the thickness can be derived from a differential model, it is too complex to be practically used. Here a modification is suggested by taking the thickness effect and the temperature effect into account, and the validity is widely enlarged. The modified Kubelka-Munk theory can be used as a color-matching model for colorful fabrics. If the porosity of the film is considered, a fractal modification with two-scale fractal derivative has to be adopted.
KEYWORDS
PAPER SUBMITTED: 2021-12-12
PAPER REVISED: 2022-07-18
PAPER ACCEPTED: 2022-07-18
PUBLISHED ONLINE: 2023-06-11
DOI REFERENCE: https://doi.org/10.2298/TSCI2303811L
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2023, VOLUME 27, ISSUE Issue 3, PAGES [1811 - 1818]
REFERENCES
  1. Cheng, T., et al., Photochromic Wool Fabrics from a Hybrid Silica Coating, Textile Research Journal, 77 (2007), 12, pp. 923-928
  2. Cheng, T., et al., Fast Response Photochromic Textiles from Hybrid Silica Surface Coating, Fibers and Polymers, 9 (2008), 3, pp. 301-306
  3. Yang, M. Y., et al., CNT/Cotton Composite Yarn for Electro-Thermochromic Textiles, Smart Materials and Structures, 28 (2019), Aug., 085003
  4. Civan, L., Kurama, S., A Review: Preparation of Functionalised Materials/Smart Fabrics that Exhibit Thermochromic Behaviour, Materials Science and Technology, 37 (2021), 18, pp. 1405-1420
  5. Ghosh, S., et al., Study of Chameleon Nylon and Polyester Fabrics Using Photochromic Ink, Journal of the Textile Institute, 109 (2018), 6, pp. 723-729
  6. Hardaker, S. S., Gregory, R. V., Progress Toward Dynamic Color-Responsive "Chameleon" Fiber Systems, MRS Bulletin, 28 (2003), 8, pp. 564-567
  7. Tang, Y., et al., Colorful Conductive Threads for Wearable Electronics: Transparent Cu-Ag Nanonets, Advanced Science, 9 (2022), 24, 2201111
  8. He, J. H., et al., Review on Fiber Morphology Obtained by Bubble Electrospinning and Blown Bubble Spinning, Thermal Science, 16 (2013), 5, pp. 1263-1279
  9. Wang, Q. L., et al., Intelligent Nanomaterials for Solar Energy Harvesting: From Polar Bear Hairs to Unsmooth Nanofiber Fabrication, Frontiers in Bioengineering and Biotechnology, 10 (2022), July, 926253
  10. Ning, C. J., et al., Nano-Dyeing, Thermal Science, 20 (2016), 3, pp. 1003-1005
  11. Kubelka, P., Munk, F., Ein Beitrag Zur Optik Der Farbanstriche, Z. Techn. Phys., 12 (1931), Aug., pp. 593-601
  12. Escobedo-Morales, A., et al., Automated Method for the Determination of the Band Gap Energy of Pure and using diffuse reflectance Mixed Powder Samples Spectroscopy, Heliyon, 5 (2019), 4, e01505
  13. Shen, J., et al., On the Kubelka-Munk Absorption Coefficient, Dyes Pigments, 127 (2016), Apr., pp. 187-188
  14. Nakamura, D. M., et al., Color Formulation in Maxillofacial Elastomer by Genetic Algorithm, Dyes Pigments, 196 (2021), Dec., 109820
  15. Soliman, H. N., Yahia, I. S., Synthesis and Technical Analysis of 6-Butyl-3-
  16. Landi, S., et al., Use and Misuse of the Kubelka-Munk Function to Obtain The Band Gap Energy from Diffuse Reflectance Measurements, Solid State Commun., 341 (2022), Jan., 114573
  17. Chen, H., et al., Full Solar-Spectral Reflectance of ZnO QDs/SiO2 Composite Pigment for Thermal Control Coating, Mater. Res. Bull., 146 (2022), Feb., 111572
  18. Sochorova, S., Jamriska, O., Practical Pigment Mixing for Digital Painting, ACM T, Graphic, 40 (2021), 6, 234
  19. Yang, R. H., et al., Color-Matching Model of Digital Rotor Spinning Viscose Melange Yarn Based on the Kubelka-Munk Theory, Textile Research Journal, 92 (2022), 3-4, pp. 574-584
  20. Moussa, A., Textile Color Formulation Using Linear Programming Based on Kubelka-Munk and Dun-can Theories, Color Research and Application, 46 (2021), 5, pp. 1046-1056
  21. Doan, H. N., et al., Fabrication and Photochromic Properties of Force Spinning (R) Fibers Based on Spiropyran-Doped Poly(Methyl Methacrylate), RSC Advances, 7 (2017), 53, pp. 33061-33067
  22. He, J. H., et al. The Maximal Wrinkle Angle During the Bubble Collapse and Its Application to the Bubble Electrospinning, Frontiers in Materials, 8 (2022), Feb., 800567
  23. Qian, M. Y., He, J. H., Collection of Polymer Bubble as a Nanoscale Membrane, Surfaces and Interface, 28 (2022), Feb., 101665
  24. Cheong, W. F., et al., A Review of the Optical-Properties of Biolodical Tissues, IEEE J. Quantum Elect., 26 (1990), 12, pp. 2166-2185
  25. Muniraju, C. B., et al., Modeling of Enhancement Effect of Moth-Eye Antireflective Coating on Organic Light-Emitting Diode, J. Nanophotonics, 12 (2018), 4, 046021
  26. Li, X. X., He, J. H., Bubble Electrospinning with an Auxiliary Electrode and an Auxiliary Air Flow, Recent Patents on Nanotechnology, 14 (2020), 1, pp. 45-42
  27. Liu, L. G., et al., Dropping in Electrospinning Process: A General Strategy for Fabrication of Microspheres, Thermal Science, 25 (2021), 2, pp. 1295-1303
  28. Lin, L., et al., Fabrication of PVDF/PES Nanofibers with Unsmooth Fractal Surfaces by Electrospinning: A General Strategy and Formation Mechanism, Thermal Science, 25 (2021), 2, pp. 1287-1294
  29. Tian, D., He, C. H., From Inner Topological Structure to Functional Nanofibers: Theoretical Analysis and Experimental Verification, Membranes, 11 (2021), 11, 870
  30. Tian, D., He, J. H., Macromolecular-Scale Electrospinning: Controlling Inner Topologic Structure Through a Blowing Air, Thermal Science, 26 (2022), 3B, pp. 2663-2666
  31. He, C. H., El-Dib, Y. O., A Heuristic Review on the Homotopy Perturbation Method for Non-Conservative Oscillators, J. Low Freq. Noise V. A., 41 (2022), 2, pp. 572-6032021
  32. Li, X. X., He, C. H., Homotopy Perturbation Method Coupled with the Enhanced Perturbation Method, J. Low Freq. Noise V. A., 38 (2019), 3-4, pp. 1399-1403
  33. Michael, C., et al., Supercontinuum-Laser Diffuse Reflectance Spectroscopy in conjunction with an extended Kubelka-Munk model-a Methodology for Determination of Temperature-Dependent Quantum Efficiency in Highly Scattering and Fluorescent Media, Appl. Opt., 58 (2019), 10, pp. 2438-2445
  34. He, J. H., When Mathematics Meets Thermal Science, The Simpler is the Better, Thermal Science, 25 (2021), 3B, pp. 2039-2042
  35. He, J. H., Seeing with a Single Scale is Always Unbelieving: From Magic to Two-Scale Fractal, Thermal Science, 25 (2021), 2B, pp. 1217-1219
  36. Qian, M. Y., He, J. H., Two-Scale Thermal Science for Modern Life -Making the Impossible Possible, Thermal Science, 26 (2022), 3B, pp. 2409-2412
  37. He, J. H., Qian, M. Y., A Fractal Approach to the Diffusion Process of Red Ink in A Saline Water, Thermal Science, 26 (2022), 3B, pp. 2447-2451
  38. Wu, P. X., et al., Solitary Waves of the Variant Boussinesq-Burgers Equation in a Fractal Dimensional Space, Fractals, 30 (2022), 3, 2250056
  39. He, C. H., A Variational Principle for a Fractal Nano/Microelectromechanical (N/MEMS) System, International Journal of Numerical Methods for Heat & Fluid Flow, 33 (2022), 1, pp. 351-359
  40. He, C. H., Liu, C., Fractal Approach to the Fluidity of a Cement Mortar, Non-linear Engineering, 11 (2022), 1, pp. 1-5
  41. He, C.-H., et al., A Fractal Model for the Internal Temperature Response of a Porous Concrete, Applied and Computational Mathematics, 21 (2022), 1, pp. 71-77
  42. He, C. H., et al., A Novel Bond Stress-Slip Model for 3-D Printed Concretes, Discrete and Continuous dynamical Systems, 15 (2022), 7, pp. 1669-1683
  43. He, C. H., Liu, C., A Modified Frequency-Amplitude Formulation for Fractal Vibration Systems, Fractals, 30 (2022), 3, 2250046

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence