FABRIC COLOR FORMULATION
USING A MODIFIED KUBELKA-MUNK THEORY
CONSIDERING THERMAL EFFECT

by

Ling LIN*ab* and Ling ZHAO*ab*

*Zhejiang Fashion Institute of Technology, Ningbo, China
b Qingdao Product Quality Testing Research Institute, Qingdao, China

Original scientific paper
https://doi.org/10.2298/TSCI2303811L

The Kubelka-Munk function is simple but it ignores the film’s thickness, so its applications are greatly limited. Though the exact relationship between the Kubelka-Munk function and the thickness can be derived from a differential model, it is too complex to be practically used. Here a modification is suggested by taking the thickness effect and the temperature effect into account, and the validity is widely enlarged. The modified Kubelka-Munk theory can be used as a color-matching model for colorful fabrics. If the porosity of the film is considered, a fractal modification with two-scale fractal derivative has to be adopted.

Key words: optical property, colorful fabrics, absorption coefficient, scattering coefficient, homotopy matching, porous film, two-scale fractal

Introduction

Colorful fabrics are widely used in textile engineering, especially the photochromic fabrics [1, 2] and thermochromic fabrics [3, 4] are the most used intelligent materials, and chameleon fabrics [5, 6] have been catching a rocketing interest in various fields from responsive camouflage to brand protection. Colorful fabrics can be also used as sensors [7] far behind fashion apparel, and far-reaching implications are emerging for applications including radiation protection [8] and energy harvesting [9]. Now the nanodyeing technology [10] has been making colorful fabrics extremely promising and remarkably challenging.

The Kubelka-Munk theory is widely used in textile engineering to describe light scattering and absorption of optical behavior of a fabric, it was first proposed by Franz Munk and Franz Munk in 1931 [11]. The Kubelka-Munk function is the main tool to fabric color formulation, it can be written in the form [11]:

\[
\frac{K}{S} = \frac{(1 - R)^2}{2R}
\]

(1)

where \(K \) and \(S \) are the absorption coefficient and the scattering coefficient of the fabric, respectively, and \(R \) is the reflectance.

Equation (1) is the famous equation for light absorption and scattering through a paint layer. It was derived under the assumption of infinite thickness \((L \rightarrow \infty)\), though many

* Corresponding authors, e-mail: linling81@163.com, zhaolingyy@aliyun.com
Lin, L., et al.: Fabric Color Formulation Using a Modified Kubelka-Munk Theory...

THERMAL SCIENCE: Year 2023, Vol. 27, No. 3A, pp. 1811-1818

experiment showed that when \(L > 2 \text{ mm} \), eq. (1) can be used with relatively high accuracy [12]. The Kubelka-Munk theory is the basic tool in color matching technology [13-20], it has been caught much attention in different fields, e.g., textile engineering, material science, physics and chemistry. Though there were claims on misuse of the Kubelka-Munk function [16] and many modified Kubelka-Munk functions were appeared in open literature, mathematical treatment on the original Kubelka-Munk theory was rare.

When the substrate is extremely thin \((L<<1) \), for examples, micro fibers [21], nanoscale membranes [22, 23], eq. (1) leads to a large error, this is because \(K/S \) depends upon \(L \), and there is a significant flaw to apply eq. (1) to films with nano/micro thickness [16-18].

The optical properties of biological tissues are extremely special at 633 nm [24], when the thickness reduces to about 220 nm, as that in the nanostructure optical surface of the moth eyes [25], eq. (1) becomes totally invalid. Now the electrospinning or the bubble electrospinning [26-30] can produce thin films with thickness of about 100 nm, and the nanodyeing [10] also asks for a modified Kubelka-Munk function.

Kubelka-Munk theory

Kubelka and Munk established a differential model to study the change of incident light intensity travelling downwards, \(i \), and upwards, \(j \), within a thin film [11], fig. 1.

The changes of \(i \) and \(j \) through an infinite distance, \(dx \), are, respectively [11]:

\[
\frac{di}{dx} = -[(K + S)i + Sj] \quad (2)
\]

and

\[
\frac{dj}{dx} = -[(K + S)j + Si] \quad (3)
\]

where \(S \) is the absorption coefficient, and \(K \) the scattering coefficient.

From eqs. (2) and (3), we have:

\[
\frac{dj}{j} - \frac{di}{i} = -2(K + S)dx + S \left(\frac{i}{j} + \frac{j}{i} \right) dx \quad (4)
\]

The reflectance is:

\[
r = \frac{j}{i} \quad (5)
\]
Equation (4) becomes:

\[\frac{1}{2\sqrt{\lambda^2 - 1}} \ln \left[\frac{R_r - \lambda + \sqrt{\lambda^2 - 1}}{R_r - \lambda} \left(\frac{R_s - \lambda - \sqrt{\lambda^2 - 1}}{R_s - \lambda} \right) \right] = SL \]

(6)

where \(\lambda = (K/S) + 1 \), \(R_r \) is the reflectance when \(L = 0 \).

Equation (7) is too complex to be used for practical applications. When \(L \to \infty \), from eq. (7) we have:

\[\left(R - \lambda + \sqrt{\lambda^2 - 1} \right) \left(R_s - \lambda - \sqrt{\lambda^2 - 1} \right) = 0 \]

(8)

or

\[R - \left(\frac{K}{S} + 1 \right) + \sqrt{\frac{K}{S} + 1} - 1 = 0 \]

(9)

or

\[\left(R - \frac{K}{S} + 1 \right)^2 = \left(\frac{K}{S} + 1 \right)^2 - 1 \]

(10)

Solving \(K/S \) from eq. (10), we have eq. (1), so mathematically eq. (1) is valid only for \(L \to \infty \).

Modified Kubelka-Munk function

We consider another case when \(r \ll 1 \). Under this assumption, we have:

\[r + \frac{1}{r} \approx \frac{1}{r} \]

(11)

Equation (6) becomes:

\[dr = -2(K + S)r dx + S dx \]

(12)

or

\[\frac{dr}{-2(K + S)r + S} = dx \]

(13)

or
\[\frac{\ln[-2(K + S)r + S]}{-2(K + S)} \, dx = dx \]

(14)

Solving eq. (14) gives the following result:

\[\frac{\ln[S - 2(K + S)R_s] - \ln[S - 2(K + S)R]}{-2(K + S)} = L \]

(15)

or

\[\ln \left[1 - 2 \left(\frac{K}{S} + 1 \right) R_s \right] - \ln \left[1 - 2 \left(\frac{K}{S} + 1 \right) R \right] = -2 \left(\frac{K}{S} + 1 \right) SL \]

(16)

This simplified one is valid for small \(R \), that is for the case with little scattering. Equation (16) has some potential applications to the color matching of micro/nanofibers with low scattering coefficient.

Another Modified Kubelka-Munk function

Consider the following inequality:

\[r + \frac{1}{r} \geq 2 \]

(17)

Equation (6) becomes a simple relation, which reads [2]:

\[d \ln r = -2(K + S)dx + S \left(r + \frac{1}{r} \right) dx \geq -2(K + S)dx + 2Sdx = -2Kdx \]

(18)

That means:

\[\ln \left(\frac{R}{R_s} \right) \geq -2 \frac{K}{S} SL \]

(19)

or

\[\frac{K}{S} \geq - \frac{1}{2SL} (\ln R - \ln R_s) \]

(20)

Considering eq. (1) and eq. (20), we modify the Kubelka-Munk function:

\[\frac{K}{S} = \frac{\alpha(L)(1 - R)}{2R} \rightleftharpoons \frac{1 - \alpha(L)}{2SL} (\ln R_s - \ln R) \]

(21)

where \(\alpha \) is a matching parameter, it is a function of \(L \), it requires \(\alpha(L > 2 \text{ mm}) = 1 \) and \(\alpha(L = 0) = 0 \). We call eq. (21) the homotopy matching, when \(\alpha = 0 \), it becomes eq. (21), and when \(\alpha = 1 \), it turns out to be eq. (1). The homotopy matching is widely applied in mathematics to solve non-linear problems [31, 32].

We choose the matching parameter as:
where \(a \) and \(b \) are parameters for experimental determination. Eq. (21) becomes:

\[
\frac{K}{S} = \frac{(1 - (1 - aLb) (1 - R)^2 + [1 - (1 - aLb)] (\ln R_e - \ln R) }{2R} \]

(22)

It is well known that reflectance is temperature-dependent [33]. If the thermal effect is considered, eq. (23) can be modified:

\[
\frac{K}{S} = \frac{(1 - (1 - (1 - e^{-alb})e^{-cr}) (1 - R)^2 + [1 - (1 - (1 - e^{-alb})e^{-cr})] (\ln R_e - \ln R) }{2R} \]

(23)

where \(c \) is a temperature-dependent parameter.

For multiple constituents, the above equation can be modified:

\[
\sum_{i=1}^{N} \frac{K_i}{S_i} = \frac{(1 - (1 - (1 - e^{-alb})e^{-cr}) (1 - R)^2 + [1 - (1 - (1 - e^{-alb})e^{-cr})] (\ln R_e - \ln R) }{2R} \]

(24)

Discussion and conclusions

When we consider the porosity of the film, a fractal modification of the Kubelka-Munk function is needed. Eqs. (2) and (3) has to be modified:

\[
d_i = -(K + S)i + Sjdx^\beta
\]

(25)

and

\[
d_j = -(K + S)j + Sidx^\beta
\]

(26)

where \(\beta \) is the fractal dimensions of the film. The two-scale fractal derivative is [34-36]:

\[
\frac{di}{dx^\beta}(x_0) = \Gamma(1 + \beta) \lim_{\Delta x \to 0} \frac{i(x) - i(x_0)}{(x-x_0)^\beta}
\]

(27)

and

\[
\frac{dj}{dx^\beta}(x_0) = \Gamma(1 + \beta) \lim_{\Delta x \to 0} \frac{j(x) - j(x_0)}{(x-x_0)^\beta}
\]

(28)

where \(\Gamma \) is the gamma function. The two-scale fractal theory is now widely applied for porous problems, see for examples, the fractal diffusion [37], the fractal solitary wave [38], the fractal micro-electro-mechanical devices [39], the fractal concrete [40-43], and the fractal composite [44].
\[d \ln r = -2(K + S)dx^\beta + S \left(r + \frac{1}{r} \right) dx^\beta \]
\hspace{1cm} (30)

The solution of eq. (30) reads:

\[\frac{1}{2\sqrt{\lambda^2 - 1}} \ln \left(\frac{R_x - \lambda + \sqrt{\lambda^2 - 1}}{R_x - \lambda - \sqrt{\lambda^2 - 1}} \right) = SL^\beta \]
\hspace{1cm} (31)

We will further discuss this fractal model in a forthcoming article.

To be concluded, this paper suggests a modified Kubelka-Munk function, eq. (24), which is also simple and considers the thickness of the film and temperature-dependent reflectance. If the porosity of the film is considered, the two-scale fractal modification is a must.

The parameters \(a \) and \(b \) and \(c \) involved in eq. (24) can be estimated experimentally. The modified Kubelka-Munk function can be used for a color-matching model for colorful fabrics, and far-reaching implications are emerging for applications include colorful image technology [45, 46] and microelectromechanical systems [47, 48].

References

[18] Sochorova, S., Jamriska, O., Practical Pigment Mixing for Digital Painting, ACM T. Graphic, 40 (2021), 6, 234

[22] He, J. H., et al., The Maximal Wrinkle Angle During the Bubble Collapse and Its Application to the Bubble Electrospinning, Frontiers in Materials, 8 (2022), Feb., 800567

[23] Qian, M. Y., He, J. H., Collection of Polymer Bubble as a Nanoscale Membrane, Surfaces and Interface, 28 (2022), Feb., 101665

[26] Li, X. X., He, J. H., Bubble Electrospinning with an Auxiliary Electrode and an Auxiliary Air Flow, Recent Patents on Nanotechnology, 14 (2020), 1, pp. 42-45

