THERMAL SCIENCE
International Scientific Journal
AN ODD ENTIRE-FUNCTION SOLUTION FOR ONE-DIMENSIONAL DIFFUSION EQUATION IN THEORY OF MODULAR FORM
ABSTRACT
This article addresses a new odd entire function of order one structured by the Fourier sine integral, which is the solution of the one-dimensional diffusion equation in theory of modular form.
KEYWORDS
PAPER SUBMITTED: 2022-11-05
PAPER REVISED: 2022-11-26
PAPER ACCEPTED: 2022-12-02
PUBLISHED ONLINE: 2023-01-21
THERMAL SCIENCE YEAR
2023, VOLUME
27, ISSUE
Issue 1, PAGES [465 - 468]
- Ramanujan, S., On Certain Arithmetical Functions, Transactions of the Cambridge Philosophical Society, 22 (1916), 9, pp. 159-184
- Sarnak, P., Some Applications of Modular Forms, Cambridge University Press, Cambridge, UK, 1990, Vol. 99
- Mordell, L. J., On Mr Ramanujan's Empirical Expansions of Modular Functions, Proceedings of the Cambridge Philosophical Society, 19 (1917), June, pp. 117-124
- Rankin, R. A., Contributions to the Theory of Ramanujan's Function τ(n) and Similar Arithmetical Functions, Mathematical Proceedings of the Cambridge Philosophical Society, 35 (1939), 03, pp. 351-356
- Yang, X. J., On the Riemann-Hardy Hypothesis for the Ramanujan Zeta Function, On-line first, doi.org/10.48550/arXiv.1811.02418
- Cannon-, J. R., et al., A Galerkin Procedure for the Diffusion Equation Subject to the Specification of Mass, SIAM Journal on Numerical Analysis, 24 (1987), 3, pp. 499-515
- Boas, R. P., Entire Functions, Academic Press, New York, USA, 1954