THERMAL SCIENCE
International Scientific Journal
A NEW FRACTIONAL THERMAL MODEL FOR THE CU/LOW-K INTERCONNECTS IN NANOMETER INTEGRATED CIRCUIT
ABSTRACT
In this paper, the Cu/Low-k interconnects in a nanoscale integrated circuit are considered. A new fractal conventional heat transfer equation is suggested using He's fractal derivative. The two-scale transform method is applied for solving the equation approximately. The new findings, which the traditional differential models can never reveal, shed a bright light on the optimal design of a nanoscale integrated circuit.
KEYWORDS
PAPER SUBMITTED: 2020-06-08
PAPER REVISED: 2021-10-01
PAPER ACCEPTED: 2021-10-01
PUBLISHED ONLINE: 2022-07-16
THERMAL SCIENCE YEAR
2022, VOLUME
26, ISSUE
Issue 3, PAGES [2413 - 2418]
- Banerjee, K., Mehrotra, A., Global (interconnect) Warming, Circuits & Devices Magazine IEEE, 17 (2001), 5, pp. 16-32
- Banerjee, K., et al., 3-D ICs: A Novel Chip Design for Improving Deep-Submicrometer Interconnect Performance and Systems-on-Chip Integration, Proceedings of the IEEE, 89 (2001), 5, pp. 602-633
- Loh, G. H., et al., Processor Design in 3D Die-Stacking Technologies, IEEE Micro, 27 (2007), 3, pp. 31-48
- Lin, S. H., Yang, H. Z., Analytical Thermal Analysis of On-chip Interconnects. Communications, Pro-ceedings, International Conference on Communications, Circuits and Systems, Guilin, China, 2006, pp. 2776-2780
- Mohamad-Sedighi, H., et al., Microstructure-Dependent Dynamic Behavior of Torsional Nano-Varactor, Measurement, 111 (2017), Dec., pp. 114-121
- Ouakad, H. M., et al., One-to-One and Three-to-One Internal Resonances in MEMS Shallow Arches, ASME. J. Comput. Nonlinear Dynam., 12 (2017), 5., 051025
- Wang, K. J., et al., Thermal Optimization of a 3-D Integrated Circuit, Thermal Science, 24 (2020), 4, pp. 2615-2620
- Wang, K. J., et al. Thermal Management of the Through Silicon vias in 3-D Integrated Circuits, Thermal Science, 23 (2019), 4, pp. 2157-2162
- Wang, N. L., Zhou, R. D., A Novel Analytical Thermal Model for Temperature Estimation of Multilevel ULSI Interconnects, (in Chinese), Journal of Semiconductors, 25 (2004), 11, pp. 1510-1514
- Tian, Y., Wan, J. X., Exact Solutions of Space-Time Fractional 2+1 Dimensional Breaking Soliton Equation, Thermal Science, 25 (2021), 2, pp. 1229-1235
- Wang, K. J., et al., Application of the Extended F-Expansion Method for Solving the Fractional Gardner Equation with Conformable Fractional Derivative, Fractals, On-line first, doi.org/10.1142/ S02183 48X22501390, 2022
- Wang, K. J., et al., The Transient Analysis for Zero-Input Response of Fractal RC Circuit Based on Lo-cal Fractional Derivative, Alexandria Eng. J., 59 (2020), 6, pp. 4669-4675
- Wang, K., On a High-Pass Filter Described by Local Fractional Derivative, Fractals, 28 (2020), 3, 2050031
- Wang, K. J., et al., The Fractional Sallen-Key Filter Described by Local Fractional Derivative, IEEE Ac-cess, 8 (2020), Sept., pp. 166377-166383
- Wang, K. J., et al., A a-Order R-L High-Pass Filter Modeled by Local Fractional Derivative, Alexandria Engineering Journal, 59 (2020), 5, pp. 3244-3248
- Tian, D., He, C. H., A Fractal Micro-Electromechanical System and Its Pull-In Stability, Journal of Low Frequency Noise Vibration and Active Control, 40 (2021), 3,pp. 1380-1386
- Tian, D., et al., Fractal N/MEMS: from Pull-in Instability to Pull-in Stability, Fractals, 29 (2021), 2, 2150030
- Wang, K. J., A New Fractional Non-Linear Singular Heat Conduction Model for the Human Head Con-sidering the Effect of Febrifuge, Eur. Phys. J. Plus, 135 (2020), 11, pp. 1-7
- Wang, K. J., Wang, G. D., Variational Principle and Approximate Solution for the Fractal Generalized Benjamin-Bona-Mahony-Burgers Equation in Fluid Mechanics, Fractals, 29 (2020), 3, 2150075
- Wang, K, J., et al., A Fractal Modification of the Sharma-Tasso-Olver Equation and Its Fractal General-ized Variational Principle, Fractals, 30 (2022), 6, 2250121
- Wang, K. J., Research on the Nonlinear Vibration of Carbon Nanotube Embedded in Fractal Medium, Fractals, 30 (2022), 1, 2250016
- Wang, K. J., Variational Principle and Approximate Solution for the Generalized Burgers-Huxley Equa-tion with Fractal Derivative, Fractals, 29 (2020), 2, 2150044
- Wang, K. J., Wang, G. D., He's Variational Method for the Time-Space Fractional Non-linear Drinfeld-Sokolov-Wilson System, Mathematical Methods in the Applied Sciences,On-line first, doi.org/10.1002/mma.7200, 2021
- Wang, K. J., Wang, K. L., Variational Principles for fractal Whitham-Broer-Kaup Equations in Shallow Water, Fractals, 29 (2020), 2, 21500286
- Wang, K. L., Fractal Solitary Wave Solutions for Fractal Nonlinear Dispersive Boussinesq-Like Models, Fractals, 30 (2022), 4, ID 2250083
- Wang, K. L., Wang, H., Fractal Variational Principles for Two Different Types of Fractal Plasma Mod-els with Variable Coefficients, Fractals, 30 (2022), 3, ID 2250043
- Wang, K. J., Si, J., Investigation into the Explicit Solutions of the Integrable (2+1)-Dimensional Maccari System via the Variational Approach, Axioms, 11 (2022), 5, 234
- He, J. H., et al., A Fractal Modification of Chen-Lee-Liu Equation and Its Fractal Variational Principle, International Journal of Modern Physics, 35 (2021), 21B, 21502143
- He, J. H., et al., On a Strong Minimum Condition of a Fractal Variational Principle, Applied Mathemat-ics Letters, 119 (2021), Sep., 107199
- He, J. H., et al., Variational Approach to Fractal Solitary Waves, Fractals, 29 (2021), 7, 2150199
- Wang, K. J., Generalized Variational Principle and Periodic Wave Solution to the Modified Equal width-Burgers Equation in Non-Linear Dispersion Media, Physics Letters A, (2021), 1773
- Wang, K. L., He, C. H., A Remark on Wang's Fractal Variational Principle, Fractals, 27 (2019), 8, 1950134
- Liu, F. J., et al., Thermal Oscillation Arising in a Heat Shock of a Porous Hierarchy and Its Application, Facta Universitatis Series: Mechanical Engineering, On-line first, https//doi.org/ 10.22190/FUME21031 7054L, 2021
- Li, X. X., He, J. H., Along the Evolution Process: Kleiber's 3/4 Law Makes Way for Rubner's Surface lAw: A Fractal Approach, Fractals, 27 (2019), 2, 1950015
- Tian, D., et al., Hall-Petch Effect and Inverse Hall-Petch Effect: A Fractal Unification, Fractals, 26 (2018), 6, 1850083
- Wang, K. J., Wang, G. D., Solitary Waves of the Fractal Regularized Long Wave Equation Travelling along an Unsmooth Boundary, Fractals, 30 (2022), 1, 2250008
- He, C. H., et al., Low Frequency Property of a Fractal Vibration Model for a Concrete Beam, Fractals, 29 (2021), 5, 150117
- Feng, G. Q., He's frequency Formula to Fractal Undamped Duffing Equation, Journal of Low Frequency Noise Vibration and Active Control, 40 (2021), 4, pp. 1671-1676
- Han, C., et al., Numerical Solutions of Space Fractional Variable-Coefficient KdV-Modified KdV Equa-tion by Fourier Spectral Method, Fractals, 29 (2021), 8, 2150246-1602
- Dan, D. D., et al., Using Piecewise Reproducing Kernel Method and Legendre Polynomial for Solving a Class of the Time Variable Fractional Order Advection-Reaction-Diffusion Equation, Thermal Science, 25 (2021), 2B, pp. 1261-1268
- Wang, K. J., On New Abundant Exact Traveling Wave Solutions to the local Fractional Gardner Equa-tion Defined on Cantor Sets, Mathematical Methods in the Applied Sciences, 45 (2021), 4, pp. 1904-1915
- Wang, K. J., Zhang, P. L., Investigation of the Periodic Solution of the Time-Space Fractional Sasa-Satsuma Equation Arising in the Monomode Optical Fibers, EPL, 137 (2022), 6, 62001
- He, J. H., Fractal Calculus and Its Geometrical Explanation, Results Phys., 10 (2018), Sept., pp. 272-276
- He, J. H., Li, Z. B., Converting Fractional Differential Equations Into Partial Differential Equations, Thermal Science, 16 (2012), 2, pp. 331-334
- Wang, K. J., Periodic Solution of the Time-Space Fractional Complex Nonlinear Fokas-Lenells Equation by an Ancient Chinese Algorithm, Optik, 243 (2021), Oct., 167461
- He, J. H., et al., Solitary Waves Travelling Along an Unsmooth Boundary, Results in Physics, 24 (2021), May, 104104
- Anjum, N., et al., Two-Scale Fractal Theory for the Population Dynamics, Fractals, 29 (2021), 7, 21501826-744