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In this paper, the Cu/Low-k interconnects in a nanoscale integrated circuit are 
considered. A new fractal conventional heat transfer equation is suggested using 
He’s fractal derivative. The two-scale transform method is applied for solving the 
equation approximately. The new findings, which the traditional differential mo-
dels can never reveal, shed a bright light on the optimal design of a nanoscale in-
tegrated circuit. 
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Introduction 

After 1990’s, the development of large-scale integrated circuit technology still fol-
lowed Moore's law, and the device size was reduced by 2/3 every three years, the chip area 
was increased by about 1.5 times, and the number of transistors in the chip was increased by 4 
times [1, 2]. The integrated circuit technology has now developed to a very large-scale stage, 
namely the ULSI stage. The number of components contained in each chip has reached 
100 million. Its micro-processing technology has reached as small as 10 nm. It has continued 
to develop in the direction of 7 nm, and finally to 5 nm. In the deep submicron ULSI, a chip 
requires 7-8 layers of wiring. The total length of its internal wiring can reach several kilome-
ters. Any a point interconnect defect is fatal to the chip [3, 4]. With the further decrease of the 
interconnection system's size and the interconnection system's size, the current density and the 
number of layers of metal wire are further increased. The thermal problems on the metal in-
terconnects are becoming more and more serious, especially the continuous rise of the tem-
perature on the metal interconnects has become an important limiting factor in the design of 
high performance integrated circuit chips. The high temperature distribution on the metal wire 
will directly deteriorate the circuit performance and result in a circuit electromigration failure, 
which will affect the reliability of the device [5-8]. 

As in fig.1, under steady-state conditions, the heat conduction equations on the met-
al wire and the through hole can be obtained, respectively [9]: 
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where 2
m rms,m mq j   and 2

rms,v v vq j   repre-
sent the Joule heat produced by the wire and the 
through-hole in the unit volume, ρm – the resis-
tivity of the metal wire, v – the resistivity of 
the through hole, km – the heat conduction coef-
ficient of the metal wire, vk – the heat conduc-
tion coefficient of the through hole, and LH,m and 
LH,v – the characteristic length of thermal diffu-
sion of the metal wire and the through-hole, re-
spectively, which can be expressed, respectively:  
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where w  is the width of the metal wire, D  – the diameter of the through-hole, and sm and sv – 
the shape parameters of the unit length wire and the through-hole respectively, which are used 
to modify the case that only 1-D heat conduction is considered in the metal wire and through-
hole, respectively.  

In the case of the single metal connection, we have: 
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The fractal modification 

It is known that the integer order derivatives are not suitable for porous problems 
accurately. On the contrary, the fractional derivative is more suitable than integer orders to 
describe many complex phenomenon, such as fractional soliton [10], cold plasma [11], fractal 
circuit [12], fractal filter [13-15], MEMS systems [16, 17], fractal disease model [18], fractal 
variational theory [19-32], fractal heat transfer through a porous cocoon [33], fractal approach 
to biology [34], fractal Hall-Petch law [35], fractal boundary [36], fractal vibration [37, 38], 
fractional KdV equation [39], fractional advection-reaction-diffusion [40], fractional Gardner 
equation [41], and fractional Sasa-Satsuma equation [42].  

As pointed out in the introduction section that eq. (1) can well describe the steady 
heat conduction model of the Cu/Low-k interconnects in nanometer integrated circuit. How-
ever, when the interconnects and through-hole are porous medium, eq. (1) becomes invalid, so 
a new fractal model is needed, which takes the following form: 

 
Figure 1. Metal interconnection in nanometer 
integrated circuit 
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where 0 1  , 0 1   , d/dxχ and d/dyγ are He’s fractal derivatives [43]: 
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where   is the smallest porous size and   and   – the fractal dimensions of the porous 
structure, respectively. 

The two-scale transform method 

The two-scale transform method extends the fractional complex transform [44-47] 
and is used widely in fractal calculus as a powerful computational analysis tool. 

Consider the fractal equation: 
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In order to use the two-scale transform method, we assume: 

 T t  (6) 

where t  is for the small scale and T  for the large scale. Then, we can convert eq. (5) into: 
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Then eq. (7) can be solved by many classical methods. 

Solution of the fractal modification 

Taking the two-scale transform as: 

 X x  (8) 

 Y y  (9) 

By using the previous transform, eq. (4) can be converted into the following form: 
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The solution of the previous equation can be obtained as [9]: 
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where j  represents the temperature difference between the junction of the upper metal wire 
and the through-hole relative to the substrate temperature Usub: 
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So, we can get the solution of the fractal modification in eq. (4) via the transforms in 
eqs. (8) and (9): 
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Conclusion 

This paper presented a fractional thermal model for the Cu/Low-k interconnects in a 
nanometer integrated circuit for the first time. The two-scale transform method is applied to 
convert the fractional equation into the ordinary equation, and an approximate analytical solu-
tion is obtained. The obtained results in this paper are expected to shed a bright light on prac-
tical applications of fractal calculus. 
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