THERMAL SCIENCE
International Scientific Journal
THE FOURIER-YANG INTEGRAL TRANSFORM FOR SOLVING THE 1-D HEAT DIFFUSION EQUATION
ABSTRACT
A new Fourier-like integral transform (called the Fourier-Yang integral transform) S[λ(t)]= ε∞∫−∞λ(t)e-jεt dt is considered to find the fundamental solutions of the 1-D heat diffusion equation in the different initial conditions.
KEYWORDS
PAPER SUBMITTED: 2017-03-10
PAPER REVISED: 2017-05-01
PAPER ACCEPTED: 2017-05-13
PUBLISHED ONLINE: 2017-12-02
THERMAL SCIENCE YEAR
2017, VOLUME
21, ISSUE
Supplement 1, PAGES [S63 - S69]
- Bergman, T. L., Introduction to Heat Transfer, John Wiley and Sons, New York, USA, 2011
- Ito, K., Diffusion Processes, John Wiley and Sons, New York, USA, 1974
- Luikov, A. V., Analytical Heat Diffusion Theory, Elsevier, New York, USA, 2012
- Shewmon, P., Diffusion in Solids. Springer, New York, USA, 2016
- Yang, X. J., A New Integral Transform Operator for Solving the Heat-Diffusion Problem, Applied Mathematics Letters, 64 (2017), Feb., pp. 193-197
- Munier, A., et al., Group Transformations and the Nonlinear Heat Diffusion Equation, SIAM Journal on Applied Mathematics, 40 (1981), 2, pp. 191-207
- Yang, X. J., Gao, F., A New Technology for Solving Diffusion and Heat Equations, Thermal Science, 21 (2017), 1A, pp. 133-140
- Elliott, D., Diffusion Flow Laws in Metamorphic Rocks, Geological Society of America Bulletin, 84 (1973), 8, pp. 2645-2664
- Dykhuizen, R. C., Casey, W. H., An Analysis of Solute Diffusion in Rocks, Geochimica et Cosmochimica Acta, 53 (1989), 11, pp. 2797-2805
- Schneider, W. R., Wyss, W., Fractional Diffusion and Wave Equations, Journal of Mathematical Physics, 30 (1989), 1, pp. 134-144
- Meerschaert, M. M., et al., Stochastic Solution of Space-Time Fractional Diffusion Equations, Physical Review E, 65 (2002), 4, 041103
- Yang, X. J., et al., Anomalous Aiffusion Models with General Fractional Derivatives within the Kernels of the Extended Mittag-Leffler Type Functions, Romanian Reports in Physics, 69 (2017), 3, in press
- Yang, X. J., et al., Local Fractional Similarity Solution for the Diffusion Equation Defined on Cantor Sets, Applied Mathematics Letters, 47 (2015), Sept., pp. 54-60
- Yang, X. J., et al., Local Fractional Variational Iteration Method for Diffusion and Wave Equations on Cantor Sets, Romanian Journal of Physics, 59 (2014), 1-2, pp. 36-48
- Yang, X. J., et al., A New Numerical Technique for Solving the Local Fractional Diffusion Equation: Two-Dimensional Extended Differential Transform Approach, Applied Mathematics and Computation, 274 (2016), Feb., pp. 143-151
- Mikhailov, M. D., Ozisik, M. N., An Alternative General Solution of the Steady-State Heat Diffusion Equation, International Journal of Heat and Mass Transfer, 23 (1980), 5, pp. 609-612
- Burgan, J. R., et al., Homology and the Nonlinear Heat Diffusion Equation, SIAM Journal on Applied Mathematics, 44 (1984), 1, pp. 11-18
- Ganji, D. D., et al., Application of Variational Iteration Method and Homotopy-Perturbation Method for Nonlinear Heat Diffusion and Heat Transfer Equations, Physics Letters A, 368 (2007), 6, pp. 450-457
- Chang, M. J., et al., Improved Alternating-Direction Implicit Method for Solving Transient Three-Dimensional Heat Diffusion Problems, Numerical Heat Transfer, Part B Fundamentals, 19 (1991), 1, pp. 69-84
- Kandilarov, J. D., Vulkov, L. G., The Immersed Interface Method for Two-Dimensional Heat-Diffusion Equations with Singular Own Sources, Applied Numerical Mathematics, 57 (2007), 5-7, pp. 486-497
- Liang, X, et al., Applications of a Novel Integral Transform to Partial Differential Equations, Journal of Nonlinear Science and Applications, 10 (2017), 2, pp. 528-534
- Yang, X. J., New Integral Transforms for Solving a Steady Heat Transform Problem, Thermal Science, 21 (2017), Suppl. 1, pp. S79-S87, (in this issue)
- Debnath, L., Bhatta, D., Integral Transforms and Their Applications, CRC press, New York, USA, 2014
- Yang, X. J., A New Integral Transform with an Application in Heat-Transfer Problem, Thermal Science, 20 (2016), Suppl. 3, pp. S677-S681
- Yang, X. J. A New Integral Transform Method for Solving Steady Heat Transfer Problem, Thermal Science, 20 (2016), Suppl. 3, pp. S639-S642