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A new Fourier-like integral transform (called the Fourier-Yang integral transform)

S[A(1)]= gi/\(t)e’“dt

is considered to find the fundamental solutions of the 1-D heat diffusion equation
in the different initial conditions.
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Introduction

The PDE in the heat transfer problems are the important topics for scientists and engi-
neers to explore the heat transport in the solid, liquid and gas [1-4]. The heat diffusion equation
is one of the interesting PDE for describe the heat transfer theory [5-7] and the diffusion flow
in metamorphic rocks [8, 9]. With the aid of the (non-local and local) fractional calculus, the
heat diffusion equation can be generalized to fractional diffusion equations [10-12] and local
fractional diffusion equations [13-15].

In order to find the solutions for the heat diffusion equations, many technologies,
such as the Laplace-like integral transform [5], finite integral transform [16], homology [17],
variational iteration [18], alternating-direction implicit [19], immersed interface [20], and the
Laplace-like integral transform [21] methods, were developed.

A new Fourier-like integral transform (called the Fourier-Yang integral transform),
proposed by Yang [22], was considered to solve the steady heat transfer problem. More integral
transforms for solving the heat transfer problems were considered in [23-25]. The aim of the
present manuscript is to present the properties of this integral transform and a new application
to find the fundamental solution for a 1-D heat diffusion equation.

The Fourier-Yang integral transform

In this section, we introduce the concepts of Fourier and Fourier-Yang integral trans-
forms, and properties of the Fourier-Yang integral transform.
The Fourier integral transform of the function ®(¢) is given [23]:
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0)=p[(1)]= [ ®(r)e " ar (1)

where @ is the Fourier integral transform operator.
The inverse Fourier integral transform operator of eq. (4) is written [23]:

=" [0(0)]=5 - Tl e(ea 2)

where ¢ is the inverse Fourier integral transform operator.
The Fourier integral formula is given [23]:

)=p"'[®(0) [ j Dt fﬂ’dr}ef‘”de 3)

—0

The new Fourier-Yang integral transform of the function A(z) is given [22]:
=S[A(t)]=& [ A(r)e 7 dr (4)

where S is the new Fourier-Yang integral transform operator.
The inverse Fourier-Yang integral transform operator is defined [22]:

% A(g)
=s"[A(e)]= i j %g)e’g’de (5)

where S™' is the inverse Fourier-Yang integral transform operator.
The Fourier-Yang integral formula is given [22]:

_ Q! — 1 T 1 T —Jje Jjet
t)=S"[A(e)] _.EL;{gLA(z)e / ’dt}e’ de (6)
Taking @ = j&, we obtain the Laplace-Carson integral transform of the function Q(¢) [24]:
= ‘R[Q(t)] = )/J.H(t)e’”dt (7)
0

where ‘R is the Laplace-Carson integral transform operator.
Similarly, the inverse Laplace-Carson integral transform operator is presented [24]:

w0+iooQ
=%"[0(y)]= % I %e”dy ®)

The properties of the Fourier-Yang integral transform operator are as follows [22].
(T1) If A(O) = o[ A(?)] and A(g) = S[A(?)], then we have:
A(0)=LA(s) and A(0)=eA(e) ©)
£

(T2) If A(t) =e “p(t), where ¢(t) is the Heaviside unit step function, then we have:
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Ag)=—= (10)
a+je
where a is a constant.
(T3) If A(¢) = 5(t), where 6(¢) represents the Dirac function, then we have:
Alg)=¢ (11)
(T4) If A(e) =S[A(?)], then we have:
S[A(t-a)]=e /" A(s) (12)
(TS) If A(e) =S[A(?)], then we have:
dA(t
S{ ( )}zng(g) (13)
dr
(T6) If A(e)=S[A(?)], then we have:
d*A(1)
S =—&'A(e 14
L2 04
(T7) If A(e) =S[A(2)] and O(g) = S[O(¢)], then we have:
S[A(1)+0(t)]=A(e)+0(e) (15)
(T8) If A(e) =S[A(?)] and BO(&) = S[O(¢)], then we have:
S[IA(t—r)@(r)dr}zlA(e)G)(e) (16)
ey 2
(T9) If A(e) =S[A(?)], then we have:
s| [ A(ar|=Lae) (17)
% je
(T10) If A(f) = be ™, where a > 0, then we have:
bem =
Aleg)= e 4 (18)
(&)=~
Proof. We have, by the definition of the Fourier-Yang integral transform, that:
A(S) =¢ T be*at2 e fdt=¢ T be{_a(til%jz_i}dt =& beii T e"”z dr | = ber 67% (19)
—00 —00 —00 \/E
where
j e dt = \/E (20)
o a
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(T1D) If
1
M, |f|<—
A(1) | 2 (21)
0
then we have:
1/2 ) &
A(s)=¢ [ Me7"dt=2M sin— (22)
-1/2
(T12) If
1 -
A(t)=—e ¥
(1)=7- -
then we have:
Ale)=ee 2 (23)
Proof. By the definition of the Fourier-Yang integral transform we have:
2 1 o2 {zez
2 S 2 iy £
A(g)ng' ! e ¥ edt=¢ J‘Le[ * : }dt =

Jang <2

PR T
=¢ e 2 Ie2§ dt |[=ge ? (24)

ang

The fundamental solution for the 1-D heat diffusion equation

In this section, we use the Fourier-Yang integral transform to solve a 1-D heat diffu-
sion equation with the different initial conditions.

We now consider the initial value problem for a 1-D heat diffusion equation without
source or sinks [23]:

OA(x,t O*A(x,t
(0) |, A0

, —o<x<owo, 0<t 25
ot ox’ 3)
where y is the diffusivity constant with the initial condition:

A(x,0)=g(x), —0<x<®© (26)

We find the Fourier-Yang integral transform for this problem with respect to the space
variable x.
Let us consider the following equations:

S{@A(x,z)} =‘9T OA(x1) jony._ OA(20) o7
ot ot ot

—o0
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O*A(x,1) O (x)
S| —"H =g | —He ™ dx=—¢"A(s,t 28
{ ox’ _J; ox’ ( ) %)
Substituting eqgs. (27) and (28) into eq. (25), we have:
dA(e,t
#4—;{/&‘2/\(8):0, 0<t (29)
where
A(e,0)=¢£g(s) (30)
Finding the solution of eq. (27), we have:
Ae,t)=eg(e)e ™" (1)
Making use of the inverse Fourier-Yang integral transform, we get:
_ 1 Fegle)e”" | 1 7 o
Alx,t)=S""[A(e, )] =— | 22—/ de=— | g(e)e/™ " de
(x,) =S5 [A(e,0)] 2R_Jw . 2n_ng(>
From eq. (16), we have:
S{J.A(x—r,t)@(r,t)dr}=lA(8,t)®(g,t) (32)
s &
which leads to:
S [lA(g,t)G(g,t)}= [A(x=7,)0(z,t)dz (33)
& —0
In view of eq. (33), we have:
A0 = [ g(x=7,00(z,1)dz (34)
where
O(r,t)=5" [ee"‘”z’} (35)
Thus, from eq. (23), we obtain:
1 o _(X77)2
A(x,0)= [g(r)e * dr (36)
4yt =,

This result is with agreement with the solution of the 1-D heat diffusion equation by

using Fourier transform [23].
Let A(x,0) = g(x) =0(x) in eq. (26). Then, from eq. (36) we have:

A(e,t) = gl

With the use of the inverse Fourier-Yang integral transform, we have:

(37
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. 1 el 17
A(x,t)=S" [A(e,t)] =5 I - ede= g j ge’ g (38)
e ¢ me

Thus, we obtain the solution for the 1-D heat diffusion equation:

(x—2)’

1 ST
A(x,t)=——— | S(r)e *' dr (39)
Janwt ,J;
which results in:
L
A(x,t)=——=c¢ " (40)

Janwt
This result is in accordance with the solution of the 1-D heat diffusion equation by
using Fourier-like transform [5].
Let A(x,0)=g(x)=¢™ in eq. (26). Then, from eq. (36) we have the solution in the
Fourier-Yang integral transform:
Ade,t) =& me *ev" (41)

By the inverse Fourier-Yang integral transform, we have:

0 2 _i —pelt 0 752
A(x,t)=S" [A(e,t)] = i J g\/ge%ewej”dg = i _[ ene Y de (42)

which leads to:

7(x—r)2
W dr (43)

1%
A(x,t)=mje (S

Conclusion

We present the new application of the Fourier-Yang integral transform to solve the
initial value problem for the 1-D heat diffusion equation in this work. The fundamental solu-
tions of this problem with the initial conditions were obtained with the use of the Fourier-Yang
integral transform. The approach for solving this problem is efficient and accurate.

Nomenclature
t — time, [s] Greek symbols
X — space co-ordinate, [m] AQxf)— temperature, [K]
W — diffusivity constant, [Wm K]
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