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A new Fourier-like integral transform (called the Fourier-Yang integral transform)

 ( ) ( )e dj tt t tεε
∞

−

−∞

Λ = Λ   ∫  

is considered to find the fundamental solutions of the 1-D heat diffusion equation 
in the different initial conditions.
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Introduction 

The PDE in the heat transfer problems are the important topics for scientists and engi-
neers to explore the heat transport in the solid, liquid and gas [1-4]. The heat diffusion equation 
is one of the interesting PDE for describe the heat transfer theory [5-7] and the diffusion flow 
in metamorphic rocks [8, 9]. With the aid of the (non-local and local) fractional calculus, the 
heat diffusion equation can be generalized to fractional diffusion equations [10-12] and local 
fractional diffusion equations [13-15]. 

In order to find the solutions for the heat diffusion equations, many technologies, 
such as the Laplace-like integral transform [5], finite integral transform [16], homology [17], 
variational iteration [18], alternating-direction implicit [19], immersed interface [20], and the 
Laplace-like integral transform [21] methods, were developed. 

A new Fourier-like integral transform (called the Fourier-Yang integral transform), 
proposed by Yang [22], was considered to solve the steady heat transfer problem. More integral 
transforms for solving the heat transfer problems were considered in [23-25]. The aim of the 
present manuscript is to present the properties of this integral transform and a new application 
to find the fundamental solution for a 1-D heat diffusion equation. 

The Fourier-Yang integral transform

In this section, we introduce the concepts of Fourier and Fourier-Yang integral trans-
forms, and properties of the Fourier-Yang integral transform. 

The Fourier integral transform of the function ( )tΦ  is given [23]:
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 ( ) ( ) ( ): e dj tt t tθθ
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−
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Φ =℘ Φ = Φ   ∫  (1)

where ℘ is the Fourier integral transform operator.
The inverse Fourier integral transform operator of eq. (4) is written [23]: 

 ( ) ( ) ( )1 1: e d
2

j tt t
j

θθ θ
∞

−

−∞

Φ =℘ Φ = Φ   π ∫  (2)

where 1−℘  is the inverse Fourier integral transform operator.
The Fourier integral formula is given [23]:
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π
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−∞ −∞

 
Φ =℘ Φ = Φ    

 
∫ ∫  (3)

The new Fourier-Yang integral transform of the function ( )tΛ  is given [22]:

 ( ) ( ) ( ): e dj tt t tεε ε
∞

−

−∞

Λ = Λ = Λ   ∫  (4)

where   is the new Fourier-Yang integral transform operator. 
The inverse Fourier-Yang integral transform operator is defined [22]: 
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where 1−  is the inverse Fourier-Yang integral transform operator.
The Fourier-Yang integral formula is given [22]:
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Taking jϖ ε= , we obtain the Laplace-Carson integral transform of the function ( )tΩ   [24]: 

 ( ) ( ) ( )
0

: e dtt t tγγ γ
∞

−Ω = ℜ Ω = Π   ∫  (7)

where ℜ  is the Laplace-Carson integral transform operator.
Similarly, the inverse Laplace-Carson integral transform operator is presented [24]:
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The properties of the Fourier-Yang integral transform operator are as follows [22].
(T1) If ( ) [ ( )]tθΛ =℘Λ  and ( ) [ ( )]tεΛ = Λ� , then we have:

 ( ) ( )1θ ε
ε

Λ = Λ    and   ( ) ( )θ ε εΛ = Λ  (9)

(T2) If ( ) e ( )att tϕ−Λ = , where ( )tϕ  is the Heaviside unit step function, then we have:
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ε
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where a  is a constant. 
(T3) If ( ) ( )t tδΛ = , where ( )tδ  represents the Dirac function, then we have:

 ( )ε εΛ =  (11)

(T4) If ( ) [ ( )]tεΛ = Λ , then we have:

 ( ) ( )e jat a ε ε−Λ − = Λ    (12)

(T5) If ( ) [ ( )]tεΛ = Λ , then we have:

 ( ) ( )
d
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j
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ε ε
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(T6) If ( ) [ ( )]tεΛ = Λ , then we have:
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2

2
2

d
d

t
t

ε ε
 Λ

= − Λ 
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(T7) If ( ) [ ( )]tεΛ = Λ  and ( ) [ ( )]tεΘ = Θ , then we have:

 ( ) ( ) ( ) ( )t t ε εΛ + Θ = Λ + Θ    (15)

(T8) If ( ) [ ( )]tεΛ = Λ  and ( ) [ ( )]tεΘ = Θ , then we have:
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∫  (16)

(T9) If ( ) [ ( )]tεΛ = Λ , then we have:
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(T10) If 
2

( ) e att b −Λ = , where 0a > , then we have:
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Proof. We have, by the definition of the Fourier-Yang integral transform, that:
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Proof. By the definition of the Fourier-Yang integral transform we have:
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The fundamental solution for the 1-D heat diffusion equation

In this section, we use the Fourier-Yang integral transform to solve a 1-D heat diffu-
sion equation with the different initial conditions.

We now consider the initial value problem for a 1-D heat diffusion equation without 
source or sinks [23]: 

 
2

2

( , ) ( , )x t x t
t x

ψ∂Λ ∂ Λ
=

∂ ∂
,    , 0x t−∞ < < ∞ <  (25)

where ψ  is the diffusivity constant with the initial condition:

 ( ,0) ( )x g xΛ = , x−∞ < < ∞  (26)

We find the Fourier-Yang integral transform for this problem with respect to the space 
variable x.

Let us consider the following equations:
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∞
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∫  (27)
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Substituting eqs. (27) and (28) into eq. (25), we have:

 ( ) ( )2d ,
0

d
t

t
ε

ψε ε
Λ

+ Λ = ,     0 t<  (29)

where

 ( ,0) ( )gε ε εΛ =  (30)

Finding the solution of eq. (27), we have:

 
2
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Making use of the inverse Fourier-Yang integral transform, we get:
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From eq. (16), we have:
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which leads to:
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In view of eq. (33), we have:
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where

 ( ) 21, e tt S ψετ ε− − Θ =    (35)

Thus, from eq. (23), we obtain:
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Λ
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This result is with agreement with the solution of the 1-D heat diffusion equation by 
using Fourier transform [23]. 

Let ( ,0) ( ) ( )x g x xδΛ = =  in eq. (26). Then, from eq. (36) we have:

 
22( , ) e tt ψεε ε −Λ =  (37)

With the use of the inverse Fourier-Yang integral transform, we have:
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Thus, we obtain the solution for the 1-D heat diffusion equation:

 
( )2

41( , )= ( )e d
4

x
tx t

t

τ
ψδ τ τ

ψ

−∞ −

−∞

Λ
π ∫  (39)

which results in:
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−
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This result is in accordance with the solution of the 1-D heat diffusion equation by 
using Fourier-like transform [5]. 

Let 
2

( ,0) ( ) e xx g x −Λ = =  in eq. (26). Then, from eq. (36) we have the solution in the 
Fourier-Yang integral transform: 

 
2
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By the inverse Fourier-Yang integral transform, we have:
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which leads to:
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( )2

2 41, = e e d
4

x
x tx t

t

τ
ψ τ

ψ

−∞ −
−

−∞

Λ
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Conclusion

We present the new application of the Fourier-Yang integral transform to solve the 
initial value problem for the 1-D heat diffusion equation in this work. The fundamental solu-
tions of this problem with the initial conditions were obtained with the use of the Fourier-Yang 
integral transform. The approach for solving this problem is efficient and accurate.

Nomenclature

t – time, [s]
x – space co-ordinate, [m]

Greek symbols

Λ(x,t) – temperature, [K]
ψ – diffusivity constant, [Wm–1K–1]
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