THERMAL SCIENCE
International Scientific Journal
NEW MULTI-SOLITON SOLUTIONS OF WHITHAM-BROER-KAUP SHALLOW-WATER-WAVE EQUATIONS
ABSTRACT
In this paper, new and more general Whitham-Broer-Kaup equations which can describe the propagation of shallow-water waves are exactly solved in the framework of Hirota's bilinear method and new multi-soliton solutions are obtained. To be specific, the Whitham-Broer-Kaup equations are first reduced into Ablowitz- Kaup-Newell-Segur equations. With the help of this equations, bilinear forms of the Whitham-Broer-Kaup equations are then derived. Based on the derived bilinear forms, new one-soliton solutions, two-soliton solutions, three-soliton solutions, and the uniform formulae of n-soliton solutions are finally obtained. It is shown that adopting the bilinear forms without loss of generality play a key role in obtaining these new multi-soliton solutions.
KEYWORDS
PAPER SUBMITTED: 2017-04-12
PAPER REVISED: 2017-05-17
PAPER ACCEPTED: 2017-05-25
PUBLISHED ONLINE: 2017-12-02
THERMAL SCIENCE YEAR
2017, VOLUME
21, ISSUE
Supplement 1, PAGES [S137 - S144]
- Drazin, P. G., Johnson, R. S., Solitons: An Introduction, Cambridge University Press, Cambridge, Mass., USA, 1989
- Gardner, C. S., et al., Method for Solving the Korteweg-de Vries Equation, Physical Review Letters, 19 (1967), 19, pp. 1095-1197
- Zhang, S., et al., Multi-Wave Solutions for a Non-Isospectral KdV-Type Equation with Variable Coefficients, Thermal Science, 16 (2012), 5, pp. 1576-1579
- Zhang, S., et al., Exact Solutions of a KdV Equation Hierarchy with Variable Coefficients, International Journal of Computer Mathematics, 91 (2014), 7, pp. 1601-1616
- Zhang, S., Liu, D. D., The third Kind of Darboux Transformation and Multisoliton Solutions for Generalized Broer-Kaup Equations, Turkish Journal of Physics, 39 (2015), 2, pp. 165-177
- Zhang, S., Wang, Z. Y., Improved Homogeneous Balance Method for Multi-Soliton Solutions of Gardner Equation with Time-Dependent Coefficients, IAENG International Journal of Applied Mathematics, 46 (2016), 4, pp. 592-599
- Hirota, R., Exact Solution of the Korteweg-de Vries Equation for Multiple Collisions of Solitons, Physics Review Letters, 27 (1971), 18, pp. 1192-1194
- Hirota, R., The Direct Method in Soliton Theory, Cambridge Univerxity Press, Cambridge, Mass., USA, 2004
- Chen, D. Y., et al., New Soliton Solutions to Isospectral AKNS Equations (in Chinese), Chinese Annals of Mathematics, Series A, 33 (2012), 2, pp. 205-216
- Zhang, S., Liu, D., Multisoliton Solutions of a (2+1)-Dimensional Variable-Coefficient Toda Lattice Equation via Hirota's Bilinear Method, Canadian Journal of Physics, 92 (2014), 3, pp. 184-190
- Zhang S., Cai, B., Multi-Soliton Solutions of a Variable-Coefficient KdV Hierarchy, Non-Linear Dynamics, 78 (2014), 3, pp. 1593-1600
- Zuo, D. W., et al., Multi-Soliton Solutions for the Three-Coupled KdV Equations Engendered by the Neumann System, Nonlinear Dynamics, 75 (2014), 4, pp. 701-708
- Zhang, S., Gao, X. D., Exact N-Soliton Solutions and Dynamics of a New AKNS Equations with Time-Dependent Coefficients, Non-Linear Dynamics, 83 (2016), 1, pp. 1043-1052
- Zhang, S., Zhang, L. Y., Bilinearization and New Multi-Soliton Solutions of MKdV Hierarchy with Time-Dependent Coefficients, Open Physics, 14 (2016), 1, pp. 69-75
- Zhang, S., et al., Bilinearization and New Multi-Soliton Solutions for the (4+1)-Dimensional Fokas Equation, Pramana-Journal of Physics, 86 (2016), 6, pp. 1259-1267
- Zhang, S., Gao, X. D., Analytical Treatment on a New GAKNS Hierarchy of Thermal and Fluid Equations, Thermal Science, 21 (2017), 4, pp.1607-1612
- Lin, G. D., et al., Elastic-Inelastic-Interaction Coexistence and Double Wronskian Solutions for the Whitham-Broer-Kaup Shallow-Water-Wave Model, Communications in Non-linear Science and Numerical Simulation, 16 (2011), 8, pp. 3090-3096
- Lin, G. D., et al., Extended Double Wronskian Solutions to the Whitham-Broer-Kaup Equations in Shallow Water, Nonlinear Dynamics, 64 (2011), 1, pp. 197-206
- Wang, L., et al., Inelastic Interactions and Double Wronskian Solutions for the Whitham-Broer-Kaup Model in Shallow Water, Physica Scripta, 80 (2009), 6, ID 065017
- Liu, Y. Liu, X. Q., Exact Solutions of Whitham-Broer-Kaup Equations with Variable Coeffcients (in Chinese), Acta Physica Sinica, 63 (2014), 20, ID 200203
- Yan, Z. L., Liu, X. Q., Solitary Wave and Non-Traveling Wave Solutions to Two Non-Linear Evolution Equations, Communications in Theoretical Physics, 44 (2005), 3, pp. 479-482
- Khalfallah, M., Exact Traveling Wave Solutions of the Boussinesq-Burgers Equation, Mathematical and Computer Modelling, 49 (2009), 3-4, pp. 666-671
- Yan, Z. Y., Zhang, H. Q., New Explicit Solitary Wave Solutions and Periodic Wave Solutions for Whitham- Broer-Kaup Equation in Shallow Water, Physics Letters A, 285 (2001), 5, pp. 355-362
- Chen, Y., Wang, Q., Multiple Riccati Equations Rational Expansion Method and Complexiton Solutions of the Whitham-Broer-Kaup Equation, Physics Letters A, 347 (2006), 4, pp. 215-227
- Mohebbi, A., et al., Numerical Solution of Non-linear Jaulent-Miodek and Whitham-Broer-Kaup Equations, Communications in Non-Linear Science and Numerical Simulation, 17 (2011), 17, pp. 4602-4610
- Zhang, S., Zhang, H. Q., Fractional Sub-Equation Method and its Applications to Non-linear Fractional PDEs, Physics Letters A, 375 (2011), 7, pp. 1069-1073
- Yang, X. J., et al., On Exact Traveling-Wave Solutions for Local Fractional Korteweg-de Vries Equation, Chaos, 26 (2016), 8, ID 084312
- Yang, X. J., et al., Exact Travelling Wave Solutions for the Local Fractional Two-Dimensional Burgers- Type Equations, Computers and Mathematics with Applications, 73 (2017), 2, pp. 203-210
- Yang, X. J., et al., On a Fractal LC-Electric Circuit Modeled by Local Fractional Calculus, Communications in Non-Linear Science and Numerical Simulation, 47 (2017) 6, pp. 200-206