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In this paper, new and more general Whitham-Broer-Kaup equations which can 
describe the propagation of shallow-water waves are exactly solved in the frame-
work of Hirota’s bilinear method and new multi-soliton solutions are obtained. 
To be specific, the Whitham-Broer-Kaup equations are first reduced into Ablow-
itz-Kaup-Newell-Segur equations. With the help of this equations, bilinear forms of 
the Whitham-Broer-Kaup equations are then derived. Based on the derived bilin-
ear forms, new one-soliton solutions, two-soliton solutions, three-soliton solutions, 
and the uniform formulae of n-soliton solutions are finally obtained. It is shown 
that adopting the bilinear forms without loss of generality play a key role in obtain-
ing these new multi-soliton solutions.
Key words: Whitham-Broer-Kaup equations, Ablowitz-Kaup-Newell-Segur 

equations, Hirota’s bilinear method, Bilinear forms, soliton solution

Introduction

Non-linear PDE are often used to describe some non-linear phenomena of the real 
world involved in many fields from physics to biology, economics, chemistry, mechanics, fluid 
dynamics, engineering, etc. Usually, researchers resort to solutions of such non-linear PDE for 
more insight into these physical phenomena. Soliton is such a kind of non-linear phenomenon 
which not only can be observed in nature, but also can be produced through experiment. As 
pointed out by Drazin and Johnson [1], it is not easy to give a comprehensive and precise defi-
nition of a soliton. However, one can associate the term with any solution of non-linear PDE 
which: represents a wave of permanent form, is localized, so that it decays or approaches a con-
stant at infinity, and can undergo a strong interaction with other solitons preserving its identity. 
With the development of soliton theory, finding soliton solutions [2-6] of non-linear PDE has 
become one of the most exciting and extremely active areas of research. 

In 1971, Hirota proposed a direct method [7] for constructing multi-soliton solutions 
of non-linear PDE. Since put forward by Hirota, Hirota’s bilinear method has developed to a 
systematic method [8] for multi-soliton solutions [9-19]. In this paper, we shall extend Hirota’s 
bilinear method to new and more general Whitham-Broer-Kaup (WBK) equations with arbi-
trary constant coefficients ( 1,2, ,6)i iγ =   [20]:

	 1 2 3 0t x x xxu uu v uγ γ γ+ + + = 	 (1)
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	 4 4 5 6 0t x x xx xxxv u v uv v uγ γ γ γ+ + − + = 	 (2)

for constructing new multi-soliton solutions. It should be noted that eqs. (1) and (2) are more 
general than the following known WBK model for the dispersive long waves in shallow water 
[17-19]:

	 0t x x xxu uu v uγ+ + + = 	 (3)

	 ( ) 0t x xxx xxv uv u vβ γ+ + − = 	 (4)

Besides, if we select appropriate values of iγ ( 1,2, ,6)i =   then eqs. (1) and (2) give 
some other known non-linear PDE, such as the approximate equations for long water waves 
[21], the Boussinesq-Burgers equations [22]. In [20], some symmetries and similarity reduc-
tions of eqs. (1) and (2) are obtained. Recently, eqs. (3) and (4) have attached much attention 
and many exact solutions like those in [23-25] have been constructed. It is worth mentioning 
that Lin et al. [17, 18] and Wang et al. [19] obtained multi-soliton solutions in terms of double 
Wronskian determinant. As far as we know, there are no multi-soliton solutions and other solu-
tions of eqs. (1) and (2) have been reported in literature. 

Bilinear forms

In order to derive the bilinear forms conveniently, we reduce eqs. (1) and (2) in ad-
vance. 

Theorem 1. If let

	 xAu a
A

= ,   
2

2 1 31
2

2 2

2
2

x xxa A Av a AB a
A A

γ γγ
γ γ

 −
= − + − + 

 
	 (5)

where a is an arbitrary constant, A and B are undetermined smooth formations of x and t, then 
the WBK eqs. (1) and (2) reduce into the AKNS equations:

	 2
1

1 (2 ) 0
2t xxA a A B Aγ− − = ,   2

1
1 ( 2 ) 0
2t xxB a A B Aγ− − + = 	 (6)

under the constraints:

	 4 1γ γ= ,   5 3γ γ= ,   
2 2

1
6

24
a γ

γ
γ

= 	 (7)

Proof. Supposing that:

	 (ln )xu a A= ,   (ln )xxv b A cAB= + 	 (8)

where a, b, and c are constants to be determined, and then substituting eqs. (8) into eqs. (1) and 
(2), we arrive at eqs. (6) under the constraints (7). We finish the proof of Theorem 1.

Theorem 2. Under the constraints (7), the WBK eqs. (1) and 2 possess the bilinear 
forms:

	 2 2
1

1D D (D 2 )
2t x x

gg f a g f f f gh
f

γ
 

= − + + 
 

	 (9)

	 2 2
1

1D D (D 2 )
2t x x

hh f a h f f f gh
f

γ
 

= − + 
 

	 (10)
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where ( , )f f x t= , ( , )g g x t= , ( , )h h x t= , Dx  and Dt  are Hirota’s differential operators [8].
Proof. Starting from eqs. (6), we suppose that:

	 gA
f

= ,   hB
f

= 	 (11)

Using Hirota’s bilinear differential operators and eqs. (11), we can re-write eqs. (6) as 
eqs. (9) and (10). Thus, the proof of Theorem 2 is end.

Multi-soliton solutions

Generally speaking, it is difficulty in using the bilinear forms (9) and (10) to construct 
multi-soliton solutions of eqs. (1) and (2). Usually one assumes 2D 2 0x f f gh+ =  to use a special 
case [13, 16-19] of eqs. (9) and (10) for the multi-soliton solutions. This is not the starting point 
of this paper. Without loss of generality, we shall construct new multi-soliton solutions by em-
ploying the bilinear forms (9) and (10) with 2D 2 0x f f gh+ ≠ . 

Theorem 3. Under the constraints (7), the WBK eqs. (1) and (2) possesses the uniform 
formulae of n-soliton solutions determined by:

	 nx n nx n

n n

g f f gu a
f g
−

= ,   
2 2

2 1 31
2 2 2

2 2

2
2

n n nx nx nxx nxx

n n n n n

g h a f g f gv a a
f f g f g

γ γγ
γ γ

 −
= − + − − + 

 
	 (12)

with

	
2

1 1
( 2 ln 2)

0,1
e e

2

n n

j j j j l jl
j j l

A
t

ng
µ ξ θ µ µ

α

µ

α = ≤ <

+ + +

=

∑ ∑
= ∑ 	 (13)

	
( )

2
1 1

2 ln 2

0,1
e e

2

n n

j j j j l jl
j j l

A
t

nh
µ ξ θ µ µ

α

µ

α = ≤ <

− + +
−

=

∑ ∑
= ∑ ,   

( )
1 1

ln 2

0,1
e

n n

j j j l jl
j j l

A

nf
µ ξ µ µ

µ

= ≤ <

+ +

=

∑ ∑
= ∑ 	 (14)

	 0
j j j jt k xξ ω ξ= + + ,   2 2 24 sinhj jk α θ= − ,   2

1
1 sinh 2
2j jaω γ α θ= ,   ( 1,2, , )j n=  	 (15)

	
2

2

sinh
2e

sinh
2

jl

j l

A

j l

θ θ

θ θ

−

=
+

,   (1 )j l n≤ < ≤ 	 (16)

where α  is a constant parameter and 0
iξ  – an arbitrary constant. The summation 0,1µ=Σ  refers to 

all possible combinations of each 0,1iµ =  for 1, 2, ,i n=  .
Proof. We first introduce a parameter α  which is independent with x and t so that:

	 2 2 2D 2x f f gh a f+ = 	 (17)

then the bilinear forms (9) and (10) become:

	 2 2
1

1D D
2t xa g f ghγ α + = 

 
,   2 2

1
1D D
2t xa h f h fγ α − = − 

 
	 (18)

Further taking the transformations [9]:
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	 f f= ,   
2

e tg gα= ,   
2

e th hα−= 	 (19)

and using eqs. (18) and (19), we convert eqs. (9) and (10) into the bilinear forms of f , g , and 
h  (here we still write them as f, g , and h for convenience):

	 2
1

1D D 0
2t xa g fγ + = 

 
,   2

1
1D D 0
2t xa h fγ − = 

 
,   2 2 2D 2x f f gh a f= − + 	 (20)

In what follows, using eqs. (20) we construct multi-soliton solutions of eqs. (1) and 
(2). To construct one-soliton solutions, we introduce a parameter ε  and expand f, g , and h:

	 ( ) ( ) ( )1 221 jjf f f fε ε ε= + + + + +  	 (21)

	 ( ) ( ) ( ) ( )0 1 22 jjg g g g gε ε ε= + + + + +  ,   ( ) ( ) ( ) ( )0 1 22 jjh h h h hε ε ε= + + + + +  	 (22)

Substituting eqs. (21) and (22) into eqs. (20) and then collecting all the coefficients 
with same order of ε , we get a system of differential equations (SDE):

	 (0) (0)
1

1 0
2t xxg a gγ+ = ,   (0) (0)

1
1 0
2t xxh a hγ− = ,   (0) (0) 22g h α= 	 (23)

	 (1) (1) 2 (0) (1)
1 1

1 1D D
2 2t xx t xg a g a g fγ γ + = − + 

 
	 (24)

	 (1) (1) 2 (0) (1)
1 1

1 1D D
2 2t xx t xh a h a h fγ γ − = − − 

 
,   (1) (0) (1) (1) (1) 2 (1)

xxf g h g h fα= − − + 	 (25)

	 ( )(2) (2) 2 (0) (2) (1) (1)
1 1

1 1D D
2 2t xx t xg a g a g f g fγ γ + = − + + 

 
	 (26)

	 ( )(2) (2) 2 (0) (2) (1) (1)
1 1

1 1D D
2 2t xx t xh a h a h f h fγ γ + = − − + 

 
	 (27)

	 ( )2(2) 2 (1) (1) (0) (2) (1) (1) (2) (0) 2 (2) (1)1 1D
2 2xx xf f f g h g h g h f fα  = − − − − + +  

	 (28)

	 ( )(3) (3) 2 (0) (3) (1) (2) (2) (1)
1 1

1 1D D
2 2t xx t xg a g a g f g f g fγ γ + = − + + + 

 
	 (29)

	 ( )(3) (3) 2 (0) (3) (1) (2) (2) (1)
1 1

1 1D D
2 2t xx t xh a h a h f h f h fγ γ + = − − + + 

 
	 (30)

	 ( )(3) 2 (1) (2) (0) (3) (1) (2) (2) (1) (3) (0) 2 (3) (1) (2)
xx xf D f f g h g h g h g h f f fα= − − − − − + + 	 (31)

and so forth.
From eqs. (23) we have:

	 (0) (0)

2
g h α

= = 	 (32)

Substituting eq. (32) into eqs. (24) and (25), we can see that:
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	 1(1) 2ef ξ= ,   1 12(1) 2 eg ξ θα += ,   1 12(1) 2 eh ξ θα −= 	 (33)

	 (0)
1 1 1 1t k xξ ω ξ= + + ,   2 2 2

1 12 sinhk α θ= − ,   2
1 1 1

1 sinh 2
2

aω γ α θ= 	 (34)

satisfy eqs. (24) and (25). 
If (2) (3) (2) (3) (2) (3) 0g g h h f f= = = = = = ⋅ ⋅ ⋅ = , then eqs. (33) and (34) satisfy all the 

other equations in previous SDE. Thus, eqs. (21) and (22) are truncated. Letting 1ε =  yields:

	 1
1 1 2ef ξ= + ,   ( )1 12

1 1 2e
2

g ξ θα += + ,   ( )1 12
1 1 2e

2
h ξ θα −= + 	 (35)

Using eqs. (5), (6), (11), (19), and (35), we obtain one-soliton solutions of eqs. (1) and (2):

	 1 1 1 1

1 1

x xg f f gu a
f g
−

= ,   
2 2

2 1 3 1 1 1 11 1 1
2 2 2

2 1 2 1 1 1 1

2
2

x x xx xxa f g f gg hv a a
f f g f g

γ γγ
γ γ

 −
= − + − − + 

 
	 (36)

To construct two-soliton solutions of eqs. (1) and (2), we select:

	 1 2(1) 2(e e )f ξ ξ= + ,   ( )1 1 2 22 2(1) 2 e eg ξ θ ξ θα + += + ,   ( )1 1 2 22 2(1) 2 e eh ξ θ ξ θα − −= + 	 (37)

and suppose that:

	 ( )2 (1) (2) (2) (1)
1

1D D 0
2t xa g f g fγ + + = 

 
	 (38)

	 ( )2 (1) (2) (2) (1)
1

1D D 0
2t xa h f h fγ − + = 

 
,   2 (1) (2) (1) (2) (2) (1) 2 (1) (2)D 0x f f g h g h f fα+ + − = 	(39)

It is easy to see that eqs. (26)-(28), (38), and (39) have solutions:

	 1 2 12(2) 4e Af ξ ξ+ += ,   1 2 1 2 122 2(2) 2 2 e Ag ξ ξ θ θα + + + += ,   1 2 1 2 122 2(2) 2 2 e Ah ξ ξ θ θα + − − += 	 (40)

Substituting eqs. (37), (40), and (41) into eqs. (29)-(31), we have:

	 (3) (3) (3) (4) (4) (4) 0f g h f g h= = = = = = ⋅ ⋅ ⋅ = 	 (41)

In this case, eqs. (17) and (18) have solutions:

   1 2 1 2 12
2 1 2(e e ) 4e Af ξ ξ ξ ξ+ += + + + , 

2
1 1 2 2 1 2 1 2 122 2 2 2

2 e 1 2(e e ) 4e
2

Atg ξ θ ξ θ ξ ξ θ θαα + + + + + + = + + +  	 (42)

	
2

1 1 2 2 1 2 1 2 122 2 2 2
2 e 1 2(e e ) 4e

2
Ath ξ θ ξ θ ξ ξ θ θαα − − + − − +−  = + + +  	 (43)

We therefore obtain two-soliton solutions of eqs. (1) and (2):

	 2 2 2 2

2 2

x xg f f gu a
f g
−

= ,   
2 2

2 1 3 2 2 2 21 2 2
2 2 2

2 2 2 2 2 2 2

2
2

x x xx xxa f g f gg hv a a
f f g f g

γ γγ
γ γ

 −
= − + − − + 

 
	 (44)
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Similiarly, three-soliton solutions of eqs. (1) and (2) are obtained:

	 3 3 3 3

3 3

x xg f f gu a
f g
−

= ,   
2 2

2 3 3 1 3 3 3 3 31
2 2 2

2 3 2 3 3 3 3

2
2

x x xx xxg h a f g f gv a a
f f g f g

γ γγ
γ γ

 −
= − + − − + 

 
	 (45)

with

	
2

3 3 1 3 1 3 131 1 2 2 1 2 1 2 122 2 22 2 2 2
3 e 1 2(e e e ) 4e 4e

2
AAtg ξ θ ξ ξ θ θξ θ ξ θ ξ ξ θ θαα + + + + ++ + + + + += + + + + + + 	

	 2 3 2 3 23 1 2 3 1 2 3 12 13 232 2 2 2 24e 8eA A A Aξ ξ θ θ ξ ξ ξ θ θ θ+ + + + + + + + + + + + + +  	 (46)

	
2

3 3 1 3 1 3 131 1 2 2 1 2 1 2 122 2 22 2 2 2
3 e 1 2(e e e ) 4e 4e

2
AAth ξ θ ξ ξ θ θξ θ ξ θ ξ ξ θ θαα − + − − +− − + − − +− = + + + + + + 	

	 2 3 2 3 23 1 2 3 1 2 3 12 13 232 2 2 2 24e 8eA A A Aξ ξ θ θ ξ ξ ξ θ θ θ+ − − + + + − − − + + + + +  	 (47)

	 3 1 3 13 2 3 23 1 2 3 12 13 231 2 1 2 12
3 1 2(e e e ) 4e 4e 4e 8eA A A A AAf ξ ξ ξ ξ ξ ξ ξ ξξ ξ ξ ξ + + + + + + + + ++ += + + + + + + + 	 (48)

If selecting:

	 1 2(1) 2(e e e )nf ξξ ξ= + + ⋅ ⋅ ⋅ + ,   1 1 2 2 22 2(1) 2 (e e e )n ng ξ θξ θ ξ θα ++ += + + ⋅ ⋅ ⋅ + 	 (49)

	 1 1 2 2 22 2(1) 2 (e e e )n nh ξ θξ θ ξ θα −− −= + + ⋅ ⋅ ⋅ + 	 (50)

by induction we can finally reach the n-soliton solutions (12) determined by eqs. (13)-(16) of 
eqs. (1) and (2). Thus, we finish the proof of Theorem 3.

Conclusion

In summary, we have bilinearized the WBK eqs. (1) and (2) and obtained new 
one-soliton solutions (36), two-soliton solutions (44), three-soliton solutions (45) and the uni-
form formulae of n-soliton solutions (12) through Hirota’s bilinear method. In the procedure of 
extending Hirota’s bilinear method to eqs. (1) and (2), one of the key steps is taking the trans-
formations (5) to reduce eqs. (1) and (2) to the AKNS eq. (6) which provide with convenience 
for the bilinear forms (9) and (10) of eqs. (1) and (2). Recently, fractional-order differential cal-
culus and its applications have attached much attention [26-29]. How to construct multi-soliton 
solutions of non-linear PDE with fractional derivatives is worthy of study.
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Nomenclature
a, b, c	 –	constants, [–]
Dt, Dx	 –	Hirota’s differential operators, [–]
e	 –	base of natural logarithms, [–]
i, j	 –	natural numbers, [–]
kj	 –	constant, [–]
l, n	 –	natural numbers, [–]
t	 –	time, [s]
x	 –	displacement, [m]

Greek symbols

α, β, γ	 –	constants, [–]
γi	 –	constant, [–]
θj, θl	 –	constants, [–]
μj, μl	 –	integers, [–]

0
jξ 	 –	constant, [–

ωj	 –	constant, [–]
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