International Scientific Journal


A study has been carried out to analyze the thermophoretic particle deposition and heat generation/absorption effects on unsteady, free convective, viscous fluid flow over a moving flat plate. The thermal conductivity of the fluid is assumed to vary as a linear function of temperature. The governing partial differential equations are solved numerically by using an implicit finite difference method of Crank Nicolson type. Numerical results for the velocity, temperature and concentration profiles as well as for the skin-friction coefficient, Nusselt number and Sherwood number distributions are obtained and presented graphically for various parametric conditions to show interesting aspects of the solution. Results indicate that the heat source/sink plays a vital role in predicting the heat transfer characteristics of moving fluids and the thermophoretic particle deposition has notable influence on the mass transfer characteristics.
PAPER REVISED: 2015-11-13
PAPER ACCEPTED: 2015-12-04
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2017, VOLUME 21, ISSUE Issue 6, PAGES [2719 - 2730]
  1. Mukhopadhyay, S., et al., Steady boundary layer flow and heat transfer over a porous moving plate in presence of thermal radiation, International Journal of Heat and Mass Transfer, 54 (2011), 13-14, pp. 2751-2757
  2. Rashidi, M.M., Erfani, E., The Modified Differential Transform Method for Investigating Nano Boundary-Layers over Stretching Surfaces, International Journal of Numerical Methods for Heat and Fluid Flow, 21 (2011), 7, pp. 864-883
  3. Rushi Kumar, B., Sivaraj, R., Heat and mass transfer in MHD viscoelastic fluid flow over a vertical cone and flat plate with variable viscosity, International Journal of Heat and Mass Transfer, 56 (2013), 1-2, pp. 370-379
  4. Nandkeolyar, R., et al., Unsteady hydromagnetic natural convection flow of a dusty fluid past an impulsively moving vertical plate with ramped temperature in the presence of thermal radiation, ASME-Journal of Applied Mechanics, 80 (2013) pp. 1-9
  5. Rashidi, M.M., et al., Free Convective Heat and Mass Transfer for MHD Fluid Flow over a Permeable Vertical Stretching Sheet in the Presence of the Radiation and Buoyancy Effects, Ain Shams Engineering Journal, 5 (2014), 3, pp. 901-912
  6. Singh, G., Makinde O.D., Mixed convection slip flow with temperature jump along a moving plate in presence of free stream, Thermal Science, 19 (2015), 1, pp. 119-128
  7. Slattery, J.C., Momentum energy and mass transfer in continua, Mcgraw hill, New York, 1972
  8. Saravanan, S., Kandaswamy, P., Low Prandtl number magneto convection in cavities: effect of variable thermal conductivity, ZAMM, 80 (2000), 8, pp. 570- 576
  9. Talukdar, P., Mishra, S.C., Transient conduction and radiation heat transfer with variable thermal conductivity, Numerical Heat Transfer A, 41 (2002), 8, 851- 867
  10. Seddeek, M.A., et al., Numerical study for the effects of thermophoresis and variable thermal conductivity on heat and mass transfer over an accelerating surface with heat source, Computational Materials Science, 47 (2009), 1, pp. 93-98
  11. Rashidi, M.M., et al., Investigation of Entropy Generation in MHD and Slip Flow over a Rotating Porous Disk with Variable Properties, International Journal of Heat and Mass Transfer, 70 (2014) pp. 892-917
  12. Acharya, M., et al., Heat and mass transfer over an accelerating surface with heat source in presence of suction and blowing, International Journal of Engineering Science, 37 (1999), 2, pp. 189-211
  13. Chamkha, A.J., Thermal radiation and buoyancy effects on Hydromagnetic flow over an accelerating permeable surface with heat source or sink, International Journal of Engineering Science, 38 (2000), 15, pp. 1699-1712
  14. Makinde, O.D., Computational modelling of MHD unsteady Flow and heat transfer over a flat plate with Navier slip and Newtonian heating, Brazilian Journal of Chemical Engineering, 29 (2012), 1, pp. 159-166
  15. Makinde, O. D., Chemically reacting hydromagnetic unsteady flow of a radiating fluid past a vertical plate with constant heat flux. Zeitschriftf¨urNaturforschung, 67 (2012), pp. 239-247
  16. Sivaraj, R., Rushi Kumar, B., Viscoelastic fluid flow over a moving vertical cone and flat plate with variable electric conductivity, International Journal of Heat and Mass Transfer, 61 (2013) pp. 119-128
  17. Makinde, O.D., Tshehla M.S., Unsteady hydromagnetic flow of radiating fluid past a convectively heated vertical plate with the Navier slip, Advances in Mathematical Physics, (2014), Article ID 973593
  18. Khan, W.A., et al., Combined heat and mass transfer of third‐grade nanofluids over a convectively‐heated stretching permeable surface, The Canadian Journal of Chemical Engineering, 93 (2015), pp. 1880-1888
  19. Uddin, Z., et al., Influence of thermal radiation and heat generation/absorption on MHD heat transfer flow of a micropolar fluid past a wedge with hall and ion slip currents, Thermal Science, 18 (2014), 2, pp. S489-S502
  20. Talbot, L., et al., Thermophoresis of particles in a heated boundary layer, Journal of Fluid Mechanics, 101 (1980), 4, pp. 737-758
  21. Batchelor, G.K., Shen, C., Thermophoretic deposition of particles in gas flowing over cold surfaces, Journal of Colloid and Interface Science, 107 (1985), 1, pp. 21-37
  22. Rahman M.M., Postelnicu, A., Effects of thermophoresis on the forced convective laminar flow of a viscous incompressible fluid over a rotating disk, Mechanics Research Communications, 37 (2010), 6, pp. 598-603
  23. Singh N.P., et al., Effects of thermophoresis on hydromagnetic mixed convection and mass transfer flow past a vertical permeable plate with variable suction and thermal radiation, Communication in Nonlinear Science and Numerical Simulation, 16 (2011), 6, pp. 2519-2534
  24. Anika, N.N., et al., Thermal diffusion effect on unsteady viscous MHD micropolar fluid flow through an infinite plate with hall and Ion-slip current, Procedia Engineering, 105 (2015), pp. 160-166
  25. Anika, N.N., et al., Hall Current effects on magnetohydrodynamics fluid over an infinite rotating vertical porous plate embedded in unsteady Laminar flow, Annals of Pure and Applied Mathematics, 3 (2013), 2, pp. 189-200
  26. Anika, N.N., Hoque, M.M., Thermal buoyancy force effects on developed flow considering hall and Ion-slip current" Annals of Pure and Applied Mathematics, 3 (2013), 2, pp. 179-188
  27. Anika, N.N., et al., Unsteady free convection flow with flow control parameter, Current Trends in Technology and Science, 2 (2013), 1, pp. 193-201.
  28. M.M. Rashidi, A. Hosseini, I. Pop, S. Kumar, N. Freidoonimehr, Comparative numerical study of single and two-phase models of nanofluid heat transfer in wavy channel, Applied Mathematics and Mechanics (English Edition) 35 (7) (2014) 831-848.
  29. M.M. Rashidi, T. Hayat, T. Keimanesh, H. Yousefian, A study on heat transfer in a secondgrade fluid through a porous medium with the modified differential transform method, Heat Transfer - Asian Research 42 (1) (2013) 31-45.
  30. F. Garoosi, B. Rohani, M.M. Rashidi, Two-Phase Mixture Modeling of Mixed Convection of Nanofluids in a Square Cavity with Internal and External Heating, Powder Technology 275 (2015) 304-321.
  31. F. Garoosi, L. Jahanshaloo, M.M. Rashidi, A. Badakhsh, M.A. Ali, Numerical Simulation of Natural Convection of the Nanofluid in Heat Exchangers using a Buongiorno Model, Applied Mathematics and Computation 254 (2015) 183-203.
  32. M.M. Rashidi, M. Ali, N. Freidoonimehr, B. Rostami, M. Anwar Hossain Mixed convective heat transfer for MHD viscoelastic fluid flow over a porous wedge with thermal radiation, Advances in Mechanical Engineering, Volume 2014 (2014) Article number 735939.

© 2023 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence