THERMAL SCIENCE

International Scientific Journal

External Links

ON TRIPLY DIFFUSIVE CONVECTION IN COMPLETELY CONFINED FLUIDS

ABSTRACT
The present paper carries forward Prakash et al. [21] analysis for triple diffusive convection problem in completely confined fluids and derives upper bounds for the complex growth rate of an arbitrary oscillatory disturbance which may be neutral or unstable through the use of some non-trivial integral estimates obtained from the coupled system of governing equations of the problem.
KEYWORDS
PAPER SUBMITTED: 2015-03-04
PAPER REVISED: 2015-12-05
PAPER ACCEPTED: 2015-12-12
PUBLISHED ONLINE: 2016-01-01
DOI REFERENCE: https://doi.org/10.2298/TSCI150304214P
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2017, VOLUME 21, ISSUE Issue 6, PAGES [2579 - 2585]
REFERENCES
  1. Stern, M. E., The Salt Fountain and Thermohaline Convection, Tellus., 12 (1960), pp.172-175
  2. Veronis, G., On Finite Amplitude Instability in Thermohaline Convection, J. Mar Res., 23 (1965), pp. 1-17
  3. Nield, D. A., The Thermohaline Rayleigh-Jeffreys Problem, J. Fluid Mech., 29 (1967), pp. 545-558
  4. Baines, P. G., Gill, A. E., On Thermohaline Convection with Linear Gradient, J. Fluid Mech., 37 (1969), pp. 289-306
  5. Turner, J. S., The Behaviour of a Stable Salinity Gradient Heated from Below, J. Fluid Mech., 33 (1968), pp. 183-200
  6. Akrour, D., Tribeche, M., Kalache, D., A Theoretical and Numerical Study of Thermosolutal Convection: Stability of a Salinity Gradient Solar Pond, Thermal Sci., 15 (2011), 1, pp. 67-80
  7. El-Maghlany, W., Elazm, M. M. A., Shahata, A., Eldrainy, Y., Mixed Convection in an Eccentric Annulus Filled by Copper Nanofluid, Thermal Sci., DOI-10.2298/TSCl140802128E (2014)
  8. Periyanagounder, G., Kanniappan, S. R., Parasuraman, L., Doubly Stratified Effects in a Free Convective Flow over a Vertical Plate with Heat and Mass Transfer, Thermal Sci., 18 (2014), 2, pp. 365-376
  9. Aggarwal, A. K., Makhija S., Hall Effect on Thermal Stability of Ferromagnetic Fluid in Porous Medium in the Presence of Horizontal Magnetic Field, Thermal Sci., 18 (2014), 2, pp. 365-376
  10. Aggarwal, A. K., Verma, A., The Effect of Compressibility, Rotation and Magnetic Field on Thermal Instability of Walters' Fluid Permeated with Suspended Particles in Porous Medium, Thermal Sci., 18 (2014), Suppl. 2, pp. S539-S550
  11. Griffiths, R. W., The Influence of a Third Diffusing Component Upon the Onset of Convection, J. Fluid Mech., 92 (1979), pp. 659-670
  12. Turner, J. S., Multicomponent Convection, Ann. Rev. Fluid Mech., 17 (1985), pp. 11-44
  13. Pearlstein, A. J., Harris, R. M., Terrones, G., The Onset of Convective Instability in a Triply Diffusive Fluid Layer. J. Fluid Mech., 202 (1989), pp. 443-465
  14. Lopez, A. R., Romero, L. A., Pearlstein, A. J., Effect of Rigid Boundaries on the Onset of Convective Instability in a Triply Diffusive Fluid Layer, Phys. Fluids A., 2 (1990), 6, pp. 897-902
  15. Ryzhkov, I. I., Shevtsova, V. M., On Thermal Diffusion and Convection in Multicomponent Mixtures with Application to the Thermogravitational Column, Phys. Fluids., 19 (2007), 027101, pp. 1- 17
  16. Ryzhkov, I. I., Shevtsova, V. M., Long Wave Instability of a Multicomponent Fluid Layer with the Soret Effect, Phys. Fluids., 21 (2009), 014102, pp. 1-14
  17. Rionero, S., Triple Diffusive Convection in Porous Media, Acta Mech., 224 (2013a), pp. 447-458
  18. Rionero, S., Multicomponent Diffusive-Convective Fluid Motions in Porous Layers Ultimately Boundedness, Absence of Subcritical Instabilities, and Global Nonlinear Stability for any Number of Salts, Phys. Fluids., 25 (2013b), 054104, pp. 1-23
  19. Prakash, J., Bala, R., Vaid, K., On the Characterization of Magnetohydrodynamic Triply Diffusive Convection, J. Magn. Magn. Mater., 377 (2015a), pp. 378-385
  20. Prakash, J., Vaid, K., Bala, R., Kumar, V., Characterization of Rotatory Hydrodynamic Triply Diffusive Convection, Z. Angew. Math. Phys. (ZAMP), 66 (2015b), pp. 2665-2675
  21. Prakash, J., Vaid, K., Bala, R., Upper Limits to the Complex Growth Rates in Triply Diffusive Convection, Proc. Ind. Nat. Sci. Acad., N. Delhi. 80 (2014), 1, pp. 115-122
  22. Sherman, M., Ostrach S., On the Principle of Exchange of Stabilities for the Magnetohydrodynamic Thermal Stability Problem in Completely Confined Fluids, J. Fluid Mech., 24 (1966), pp. 661-671
  23. Gupta, J. R., Sood, S. K., Bhardwaj, U. D., Double-Diffusive Convection in Completely Confined Fluids, J. Math. Phy. Sci., 19 (1985), 4, pp. 283-293
  24. Gupta, J. R., Dhiman, J. S., On Arresting the Linear Growth Rate for the Magnetohydrodynamic Thermal Stability Problem in Completely Confined Fluids, J. Math. Anal. Appln., 262 (2001), pp. 221-228
  25. Gupta, J. R., Dhiman, J. S., Gorla, M. G., On the Magnetohydrodynamic Thermohaline Stability Problem in Completely Confined Fluids, J. Math. Anal. Appln., 276 (2002), pp. 882-895
  26. Mohan, H., Kumar, P., Singh P., On Generalized Hydromagnetic Thermosolutal Convection: The Dufour-effect, Thermal Sci., 9 (2005), 1, pp. 139-150

2025 Society of Thermal Engineers of Serbia. Published by the VinĨa Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence