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The present paper carries forward Prakash et al. [21] analysis for triple diffusive 
convection problem in completely confined fluids and derives upper bounds for the 
complex growth rate of an arbitrary oscillatory disturbance which may be neutral 
or unstable through the use of some non-trivial integral estimates obtained from 
the coupled system of governing equations of the problem.
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Introduction

Convective motions can occur in a stably stratified fluid when there are two compo-
nents contributing to the density which diffuse at different rates. This phenomenon is called 
double-diffusive convection. To determine the conditions under which these convective mo-
tions will occur, the linear stability of two superposed concentration (or one of them may be 
temperature gradient) gradients has been studied by Stern [1], Veronis [2], Nield [3], Baines 
and Gill [4], Turner [5], Akrour et al. [6], El-Maghlany et al. [7], Periyanagounder et al. [8], 
Aggarwal and Makhija [9] and Aggarwal and Verma [10].

The case of two component system has been considered only. However, it has been 
recognized later (Griffiths [11], Turner [12]) that there are many situations wherein more than 
two components are present. Examples of such multiple diffusive convection fluid systems 
include the solidification of molten alloys, geothermally heated lakes, magmas and their labora-
tory models, and sea water. For the detailed overview of the work done on triply/multiple diffu-
sive convection one may refer to Griffiths [11], Pearlstein et al. [13], Lopez et al. [14], Ryzhkov 
and Shevtsova [15, 16], Rionero [17, 18], Prakash et al. [19, 20]. These researchers found that 
small concentrations of a third component with a smaller diffusivity can have a significant 
effect upon the nature of diffusive instabilities and direct salt finger and oscillatory modes are 
simultaneously unstable under a wide range of conditions, when the density gradients due to 
components with the greatest and smallest diffusivity are of same signs. Recently Prakash et al. 
[21] derived the bounds for the complex growth rate in triply diffusive convection.

All these researchers have confined themselves to horizontal layer geometry, perhaps, 
due to the complexity involved in the analysis of the hydrodynamic problems with arbitrary 
geometries. However, there are a few researchers (Sherman and Ostrach [22], Gupta et al. 
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[23, 24], Gupta and Dhiman [25], Mohan et al. [26]) who have extended the classical work to 
more general hydrodynamic stability problems with arbitrary boundaries. In the present com-
munication, which is motivated by the desire to extend the works of Gupta et al. [23] to more 
complex problem, namely, triply diffusive convection problem for completely confined fluids 
and bounds for the complex growth rate are obtained which are important keeping in view the 
fact that exact solutions, even in the case of simple horizontal plane rigid boundaries, are not 
obtainable in a closed form. The following result is obtained in this direction. 

The complex growth rate r ip p ip= +  of an arbitrary oscillatory ( 0)ip ≠  disturbance, 
which may be neutral or unstable for triply diffusive convection problem in completely con-
fined fluid lies inside a semicircle with centre origin and radius equals 1/2

1 2 [( ) ]R R σ+  in the right 
half of the complex p − plane. The results of Gupta et al. [23] for double-diffusive convection 
problem in completely confined fluids are obtained as a consequence. 

Mathematical formulation and analysis

Consider a Boussinesq fluid statically confined in an arbitrary completely enclosed re-
gion, fig. 1, which is maintained at a uni-
form temperature and concentration gradi-
ent parallel to the body force acting on a 
fluid by applying certain prescribed thermal 
and concentration boundary conditions on 
the bounding walls. The problem under in-
vestigation is to examine the stability of this 
physical configuration when the heat and 

the two concentrations make opposing contributions to the vertical density gradient. It is further 
assumed that the cross diffusion effects can be neglected.

The governing linearized perturbation equations in non-dimensional form for the 
problem with time dependence of the form exp(pt) (  r ip p ip= +  being complex in general) are 
given by Gupta et al. [23]

	 2
1 1 2 2U U grad ˆ) ˆ( ˆp P R k R k R kθ φ φ

σ
= ∇ − + − −

 

	 (1)

	 2 U ˆp kθ θ∇ − = − ⋅


	 (2)

	 2
1 1 1

ˆUp kτ φ φ∇ − = − ⋅


	 (3)

	 2
2 2 2

ˆUp kτ φ φ∇ − = − ⋅


	 (4)

	 divU 0=


	 (5)
The equations have been written in dimensionless forms by using the scale factors 

/dκ , 2/d κ , dβ , 2
1 2( )/ , , andd d dρνκ β β  for velocity, time, temperature, pressure, and the two 

concentrations, respectively. The symbols which appear in this paragraph and in eqs. (1) and (2) 
have been defined in the nomenclature.

We seek solutions of eqs. (1)-(5) in a simply connected subset V  of 3R  with bound-
ary S  subject to the following homogeneous time independent boundary conditions:

	 1 2U 0 θ φ φ= = = =


	 (6)
on S  (rigid bounding surface with fixed temperature and mass concentrations).

g = (0, 0, −g)

S

dS

y

x

z

dV

n

Figure 1. Physical configuration
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Equations (1)-(5) together with boundary conditions (6) constitute an eigenvalue 
problem for p for prescribed values of the other parameters and the system is stable, neutral or 
unstable according as rp  is negative, zero or positive. Further if 0rp =  implies 0,ip =  then the 
principle of the exchange of stabilities is valid otherwise we will have overstability. 

Now we prove the following theorem.
Theorem: If 1 20, 0, 0, 0rR R R p> > > ≥ , and 0,ip ≠  then a necessary condition for 

the existence of a non-trivial solution 1 2( , U, , , )p θ φ φ


 of eqs. (1)-(5) together with boundary 
conditions (6) is that:

	 2
1 2( )  p R R σ< + 	

Proof: We rewrite system of eqs. (1)-(4) in the following convenient forms:

	 2
1 1 2 2U grad( ) U 0ˆ ˆ ˆp P R k R k R kθ φ φ

σ
+ −∇ − + + =

 

	 (7)

	 2 U ˆ 0R p kθ θ − ∇ − + ⋅ = 


	 (8)

	 2
1 1 1 1 U 0ˆR p kτ φ φ ∇ − + ⋅ = 



	 (9)

	 2
2 2 2 2 U 0ˆR p kτ φ φ ∇ − + ⋅ = 



	 (10)

Forming the dot product of eq. (7) with *U


 (* indicates complex conjugation) and 
integrating over the domain V, we get:

	

* * * 2

* * *
1 1 2 2

U U d grad U d U U d

( ) U d (

( ) ( ) ( )

ˆ ˆ ˆ) U d ( ) U d 0
V V V

V V V

p V P V V

R k V R k V R k V

σ

θ φ φ

⋅ + ⋅ − ⋅∇ −

     − ⋅ + ⋅ + ⋅ =     

∫ ∫ ∫

∫ ∫ ∫

    

  

	 (11)

Subsequently, for convenience in writing, we omit V and the infinitesimal volume dV  
from the integral sign and the integrand, respectively.

Multiplying eqs. (8)-(10) by * * *
1 2, ,θ φ φ , respectively, integrating over the domain V, we 

get:

	 * 2 U ˆ 0R p kθ θ θ − ∇ − + ⋅ = ∫


	 (12)

	 * 2
1 1 1 1 1 U 0ˆR p kφ τ φ φ ∇ − + ⋅ = ∫



	 (13)

	 * 2
2 2 2 2 2 U 0ˆR p kφ τ φ φ ∇ − + ⋅ = ∫



	 (14)

Now, adding eqs. (12)-(14) to eq. (11), we have:

	

* * * 2 * 2 * 2
1 1 1 1

* 2
2 2 2 2 1 1 2 2

) ( ) ( )

(

(U U (grad

)

) U (U U)

0

p P R p R p

R p RI R I R I

θ θ φ τ φ
σ

φ τ φ

⋅ + ⋅ − ⋅∇ − ∇ − + ∇ − +

+ ∇ − − + + =

∫ ∫ ∫ ∫ ∫

∫

    

	 (15)

where
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	 *ˆ2 ( U ) ,I Re kθ = ∫ ⋅ 


  *
1 12 ( U ) ,ˆI Re kφ = ∫ ⋅ 



  *
2 2

ˆ2 ( U )I Re kφ = ∫ ⋅ 


	

and Re denotes the real part. Using Gauss theorem and boundary conditions (6), we have:

	 * * *(grad ) U U dˆ ivU 0
S

P P n P⋅ = ⋅ − =∫∫ ∫
  

	 (16)

	

* 2 *

* *

*

(U ) (curlcurlU U )

curlU cur ˆ( )lU curlU U

curlU curlU
S

U

n×

⋅∇ = − ⋅

= − ⋅ − ⋅

= − ⋅

∫ ∫
∫∫

∫

   

   

 

	 (17)

	

* 2 * *

*

( ) ˆ( )
S

nθ θ θ θ θ θ

θ θ

∇ = ∇ ⋅ − ∇ ⋅∇

= − ∇ ⋅∇

∫∫∫

∫ 	 (18)

	

* 2 * *
1 1 1 1 1 1

*
1 1

ˆ(( ))
S

nφ φ φ φ φ φ

φ φ

∇ = ∇ ⋅ − ∇ ⋅∇

= − ∇ ⋅∇

∫ ∫∫

∫ 	 (19)

	

* 2 * *
2 2 2 2 2 2

*
2 2

ˆ(( ))
S

nφ φ φ φ φ φ

φ φ

∇ = ∇ ⋅ − ∇ ⋅∇

= − ∇ ⋅∇

∫ ∫∫

∫ 	 (20)

where n̂ is a unit outward drawn normal at any point on S . Using integral relations (16)-(20) in 
eq. (15), we have:

	

2 2* * * *
1 1 1 1 1

2*
2 2 2 2 2 1 1 2 2

(U U ) curlU curlU ( ) ( )

( ) 0

p R p R p

R p RI R I R I

θ θ θ τ φ φ φ
σ

τ φ φ φ

⋅ + ⋅ + ∇ ⋅∇ + − ∇ ⋅∇ + −

− ∇ ⋅∇ + − + + =

∫ ∫ ∫ ∫

∫

   

	 (21)

Equating the imaginary part of eq. (21) to zero, we have for 0ip ≠ :

	 2 2 2*
1 1 2 2

1 (U U ) R R Rθ φ φ
σ

⋅ + = +∫ ∫ ∫ ∫
 

	 (22)

Multiplying eq. (3) by its complex conjugate, integrating over V and using integral 
relation (19), we have:

	
22 2 22 2 *

1 1 1 1 1 12 U ˆ
rp p kτ φ φ τ φ φ∇ + + ∇ ⋅∇ = ⋅∫ ∫ ∫ ∫



	 (23)

Since 0,rp ≥  0,ip ≠  eq. (23) implies that:

	
22 *

1 2 2

1 1U U Uk̂
p p

φ < ⋅ ≤ ⋅∫ ∫ ∫
  

	 (24)
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In the same manner, it follows from eq. (4) that:

	 2 *
2 2

1 U U
p

φ ≤ ⋅∫ ∫
 

	 (25)

Utilizing inequalities (24) and (25) in eq. (22), we have:

	 2*1 2
2 2

1 U U 0R R R
p p

θ
σ

 
 − − ⋅ + <
 
 

∫ ∫
 

	 (26)

which clearly implies that:

	 2
1 2( )p R R σ< + 	

This proves the theorem.
The previous theorem can be stated from the physical point of view as the complex 

growth rate r ip p ip= +  of an arbitrary oscillatory ( 0)ip ≠  disturbance, which may be neutral 
or unstable for triply diffusive convection problem in completely confined fluid lies inside a 
semicircle with centre origin and radius equals 1/2

1 2 [( ) ]R R σ+  in the right half of the complex 
p − plane.

Special cases: The following results may be obtained from theorem as special cases:
–– for thermohaline convection of Veronis [2] type in completely confined fluids 

1 2( 0, 0, 0)R R R> > = , 1/2
1 ( )p Rσ< , Gupta et al. [23],

–– for thermohaline convection of Stern [1] type in completely confined fluids 
1 2( 0, 0, 0)R R R< < = , 1/2 ( )p R σ< , Gupta et al. [23], and

–– for triply diffusive convection analogous to Stern [1] type in completely confined fluids 
1 2 ( 0, 0, 0)R R R< < < , 1/2 ( )p R σ< .

Proof: Putting 1 1| |R R= −  and 2 2| |R R=  in eq. (1), and adopting the same procedure as 
is used to prove theorem, we obtain the desire result.

Conclusion 

Upper bounds for the complex growth rate of an arbitrary oscillatory disturbance 
which may be neutral or unstable for triple diffusive convection problem in completely confined 
fluids through the use of some non-trivial integral estimates are obtained from the coupled sys-
tem of governing equations of the problem. These bounds are important since exact solutions 
in the closed form are not obtainable for the present problem. Further the existing results of 
thermohaline convection problem in completely confined fluids are obtained as a consequence.

Nomenclature
d	 –	 depth of layer, [m]
g	 –	 acceleration due to gravity, [ms–2]
P	 –	 pressure, [Pa]
p	 –	 growth rate, [s–1]
R	 –	 thermal Rayleigh number, [–]
R1	 –	 solutal Rayleigh number for first 

concentration component, [–]
R2	 –	 solutal Rayleigh number for second 

concentration component, [–]
t	 –	 time, [s]

U


	 –	 velocity, [ms–1]

Greek symbols

β 	 –	 uniform temperature gradient [Km–1]
1β 	 –	 uniform concentration gradient for first 

concentration component, [–]
2β 	 –	 uniform concentration gradient for second 

concentration component, [–]
θ 	 –	 perturbation in temperature, [K]
κ 	 –	 thermal diffusivity, [m2s–1]
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1κ 	 –	 mass diffusivities of first concentration 
component, [m2s–1] 

2κ 	 –	 mass diffusivities of second concentration 
component, [m2s–1]

ν 	 –	 kinematic viscosity, [m2s–1]
σ 	 –	 Prandtl number, ( /ν κ= ), [–]
ρ 	 –	 density, [kgm–3].

1τ 	 –	 Lewis number for first concentration 
component, 1( )/κ κ= , [–] 

2τ 	 –	 Lewis number for second concentration 
component, 2( )/κ κ= , [–] 

1φ 	 –	 perturbation concentration of  
first component, [kg] 

2φ 	 –	 perturbation concentration of second 
component, [kg]
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