THERMAL SCIENCE

International Scientific Journal

Authors of this Paper

External Links

HOMOTOPY PERTURBATION METHOD TO MHD NON-NEWTONIAN NANOFLUID FLOW THROUGH A POROUS MEDIUM IN ECCENTRIC ANNULI WITH PERISTALSIS

ABSTRACT
In this contribution, the magnetohydrodynamic non-Newtonian nanofluid flow through a porous medium in eccentric annuli with peristalsis is investigated. This has been done under the combined effect of viscous dissipation and radiation. The inner annulus is rigid and at rest, while the outer annulus has a sinusoidal wave traveling down its wall. The fundamental equations are modulated under the long wave length assumptions, and a closed form of solution is obtained for the axial velocity. While, homotopy perturbation solution is obtained, which satisfies the energy and nanoparticles equations. Numerical results for the axial velocity, temperature, and nanoparticles phenomena distributions as well as the reduced Nusselt and Sherwood numbers are obtained and tabulated for various parametric conditions.
KEYWORDS
PAPER SUBMITTED: 2015-02-15
PAPER REVISED: 2015-05-10
PAPER ACCEPTED: 2015-05-25
PUBLISHED ONLINE: 2015-06-07
DOI REFERENCE: https://doi.org/10.2298/TSCI150215079A
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2017, VOLUME 21, ISSUE Issue 5, PAGES [2069 - 2080]
REFERENCES
  1. Wang, X.Q., Mujumdar, A. S., Heat Transfer Characteristics of Nanofluids: A Review, Int. J. Thermal Sci. 46 (2007), pp. 1-19
  2. Nadeem, S., Haq, R. U., MHD Boundary Layer Flow Of A Nanofluid Passed Through A Porous Shrinking Sheet With Thermal Radiation, J. Aerosp. Eng. 28 (2015), 04014061.
  3. Mustafa, M., Hayat, T., Pop, I., Asghar, S., Obaidat, S., Stagnation-Point Flow of A Nanofluid Towards A Stretching Sheet, Int. J. Heat Mass Transfer, 54 (2011), pp. 5588- 5594
  4. Ho, C. J., Chen, M. W., Li, Z. W., Numerical Simulation of Natural Convection of Nanofluid in a Square Enclosure: Effect Due To Uncertainties of viscosity And Thermal Conductivity, Int. J. Heat Mass Transfer, 51 (2008), pp. 4506-4516
  5. Santra, A. K., Sen, S., Chakraborty, N., Study of Heat Transfer Augmentation In A Differentially Heated Square Cavity Using Copper-Water Nanofluid, Int. J. Therm. Sci. 47 (2008), pp. 1113-1122
  6. Mahmoudi, A. H., Shahi, M., Talebi, F., Effect of Inlet And Outlet Location On The Mixed Convective Cooling Inside The Ventilated Cavity Subjected To An External Nanofluid, Int. Commun. Heat Mass Transfer, 37 (2010), pp. 1158-1173
  7. Mahmoudi, A. H., Shahi, M., Shahedin, A.M., Hemati, N., Numerical Modeling of Natural Convection In An Open Cavity With Two Vertical Thin Heat Sources Subjected To A Nanofluid, Int. Commun. Heat Mass Transfer, 38 (2011), pp. 110-118
  8. Abu-Nada, E., Effects of Variable Viscosity And Thermal Conductivity of Al2O3-Water Nanofluid On Heat Transfer Enhancement In Natural Convection, Int. J. Heat Fluid Flow 30 (2009), pp. 679-690
  9. Khaled, A. R. A., Vafai, K., Heat Transfer Enhancement Through Control of Thermal Dispersion Effects, Int. J. Heat Mass Transfer, 48 (2005), pp. 2172-2185
  10. Kuznetsov, A. V., Nield, D. A., Natural Convective Boundary-Layer Flow of A Nanofluid Past A Vertical Plate, Int. J. Thermal Sci. 49 (2010), pp. 243-247
  11. Choi, S. U. S., Enhancing Thermal Conductivity of Fluids With Nanoparticles, ASME Fluids Eng. Div. 231 (1995), pp. 99-105
  12. Chen, R. X., Liu, F. J., J. He, H., Fan, J., Silk Cocoon: "Emperor's New Clothes" for Pupa: Fractal Nano-Hydrodynamical Approach, J. Nano Res. 22 (2013), pp. 65-70
  13. Eldabe, N. T., Abou-zeid, M. Y., Magnetohydrodynamic Peristaltic Flow With Heat And Mass Transfer of Micropolar Biviscosity Fluid Through A Porous Medium Between Two Co-Axial Tubes, Arab J. Sci. Eng. 39 (2014), pp. 5045-5062
  14. Mustafa, M., Hina, S., Hayat, T., Alsaedi, A., Influence of Wall Properties On The Peristaltic flow of A Nanofluid: Analytic And Numerical Solutions, Int. J. Heat Mass Transfer 55 (2012), pp. 4871-4877
  15. Akbar, N. S., Nadeem, S., Endoscopic Effects On Peristaltic Flow of A Nanofluid, Commun. Theor. Phys. 56 (2011), pp. 761-768
  16. Akbar, N. S., Nadeem, S., Hayat, T., Hendi, A. A., PeristalticFlow of A Nanofluid With Slip Effects, Meccanica, 47 (2012), pp. 1283-1294
  17. Eldabe, N. T., Abou-zeid, M. Y., The Wall Properties Effect On Peristaltic Transport of Micropolar Non-Newtonian Fluid With Heat And Mass Transfer. Math. Prob. Eng. (2010), Article ID 898062, 40 pages.
  18. Akbar, N. S., Nadeem, S., Hayat, T., Hendi, A. A., Peristaltic Flow of A Nanofluid In A Non-Uniform Tube, Heat Mass Transfer/Waerme-und Stoffuebertragung 48 (2012), pp. 451-459
  19. Akbar, N. S., Nadeem, S., Peristaltic Flow of A Phan-Thien-Tanner Nanofluid In A Diverging Tube, Heat Transfer, 41 (2012), pp. 10-22
  20. Ebaid, A., Aly, E. H., Exact Analytical Solution of The Peristaltic Nanofluids Flow In An Asymmetric Channel With Flexible Walls And Slip Condition: Application To The Cancer Treatment, Comput. Math. Meth. Med. (2013), Article ID 825376, 8 pages.
  21. Ebaid, A., Remarks On The Homotopy Perturbation Method For The Peristaltic Flow of Jeffrey Fluid With Nano-Particles In An Asymmetric Channel, Comput. Math. Appl. 68 (2014), pp. 77-85 22) Nelson, E. B., Well Cementing, Elseivier, Amsterdam, New York, USA, 1990
  22. Walton, I. C., Bittleston, S. H., The Flow of A Bingham Plastic Fluid In A Narrow Eccentric Annulus, J. Fluid Mech. 222 (1991), pp. 39-60
  23. Ahmed, M. E. S., Attia, H. A., Magnetohydrodynamic Flow And Heat Transfer of A Non-Newtonian Fluid In An Eccentric Annulus, Can. J. Phys. 76 (1998), pp. 391-401
  24. El-Sayed, M. F., Eldabe, N. T., Ghaly, A. Y., Sayed, H. M., Magnetothermodynamic Peristaltic Flow of Bingham Non-Newtonian Fluid in Eccentric Annuli With Slip Velocity and Temperature Jump Conditions, J. Mechanics, 29 (2013), pp. 493-506
  25. Rohsenow, W. M., Hartnett, J. P., Cho, Y. I., Handbook of Heat Transfer, McGraw-Hill, New York, USA, 1998
  26. Davood, D. G., Zaman, Z. G., Hosain, D. G., Determination of temperature distribution for annular fins with temperature dependent thermal conductivity by HPM, Thermal Sci. 15 (2011), pp. S111-S115
  27. He, J. H., Homotopy Perturbation Technique, Comput. Methods Appl. Mech. Eng. 178 (1999), pp. 257-262
  28. Rajeev, Homotopy perturbation method for a Stefan problem with variable latent heat, Thermal Sci. 18 (2014), pp. 391-398

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence