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In this contribution, the magnetohydrodynamic non-Newtonian nanofluid flow 
through a porous medium in eccentric annuli with peristalsis is investigated. This 
has been done under the combined effect of viscous dissipation and radiation. The 
inner annulus is rigid and at rest, while the outer annulus has a sinusoidal wave 
traveling down its wall. The fundamental equations are modulated under the long 
wave length assumptions, and a closed form of solution is obtained for the axial 
velocity. While, homotopy perturbation solution is obtained, which satisfies the en-
ergy and nanoparticles equations. Numerical results for the axial velocity, temper-
ature, and nanoparticles phenomena distributions as well as the reduced Nusselt 
and Sherwood numbers are obtained and tabulated for various parametric condi-
tions. 
Key words: peristaltic flow, non-Newtonian nanofluid, porous medium,  
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Introduction 

 Nanofluid is a liquid containing nanometer sized particles (having diameter less than 
100 nm), called nanoparticles. The nanoparticles are typically made up of metals, oxides, and 
carbides or carbon nanotubes. Nanofluids are produced by dispersing the nanometer scale solid 
particles into base liquids with low thermal conductivity such as water, ethylene glycol, oils, 
etc. [1]. The heat conduction has a great importance in many industrial heating or cooling equip-
ments. Recently, there is a great advancement in the study of the flow of nanofluids with con-
vective heat transfer [2]. Boundary layer flow of nanofluid in the region of stagnation point 
towards a stretching sheet has been addressed by Mustafa et al. [3]. Recently, many authors 
have investigated the nanofluid flow for different geometric surfaces, e. g., Ho et al. [4], Santra 
et al. [5], Mahmoudi et al. [6, 7], Abu-Nada [8], Khalid and Vafai [9], Kuznetsov and Nield 
[10], and Choi [11]. 

It may be noted that the particle size is an important physical parameter in nanofluids 
because it can be used to tailor the nanofluid thermal properties, as well as the suspension stability 
of nanoparticles. But, for the nanoscale thin liquid film flows, a fluid molecular layer attached to 
the wall molecules behaves as an extended wall layer, which induces increased shearing in the 
middle of the fluid. Researchers in nanofluids have been trying to exploit the unique properties of 
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nanoparticles to develop stable as well as highly conducting heat transfer fluids. Nanofluids have 
many applications such as transportation, electronics cooling, defense, space, nuclear systems 
cooling, nuclear systems cooling, heat exchanger, and biomedicine. In view of its mechanical 
properties, silk cocoon is an emperor's new clothes for pupa. A theoretical analysis is given to 
explain the fascinating phenomenon by a fractal nanohydrodynamic model for discontinuous 
membrane composed of hierarchical silk cascade. It is found that the nanococoon mechanism 
could help the further design of biomimetic artificial clothes for special applications [12]. 

 It is now a well-accepted fact that many physiological fluids behave in general like 
suspensions of deformable or rigid particles in a Newtonian fluid. Blood, for example, is of red 
cells, white cells, and platelets in plasma. Another example is cervical mucus, which is a sus-
pension of macromolecules in a water-like liquid. In view of this, some researchers have tried 
to account for the suspension behavior of biofluids by considering them non-Newtonian [13]. 
The peristaltic flow of non-Newtonian fluid has attracted the attention of many researchers in 
the past three decades, mainly because of its relevance to biological systems and industrial 
applications. A mathematical model of peristaltic motion of nanofluid in a channel with com-
pliant walls is presented by Mustafa et al. [14]. They have computed numerical and analytic 
solutions of the developed differential system which are found in excellent agreement. Akbar 
and Nadeem [15] and Akbar et al. [16], studied the effects of endoscope on the peristaltic 
transport of nanofluids and the slip effects on the peristaltic transport of nanofluid in an asym-
metric channel. The problem of the unsteady peristaltic mechanism with heat and mass transfer 
of an incompressible micropolar non-Newtonian fluid in a 2-D channel is analyzed by Eldabe 
and Abou-zeid [17]. They include the viscoelastic wall properties, all micropolar fluid parame-
ters as well as the viscous dissipation effect. Recently, a vast amount of literature is available 
on peristaltic flow of Newtonian and non-Newtonian nanofluid [18-21]. 

 The pipe eccentricity effects are used to design or evaluate technological operations 
in oil fields. Nevertheless, a predominant role in drilling and cementing operations is played by 
pipe eccentricity [22]. Walton and Bittleston [23] obtained analytical and numerical solutions 
for Bingham plastic flow in a narrow eccentric annulus. The MHD steady-laminar flow and 
heat transfer of an incompressible, electrically conducting and non-Newtonian fluid in an ec-
centric annulus is studied by Ahmed and Attia [24]. El-Sayed et al. [25] investigated the peri-
staltic flow and heat transfer of non-Newtonian fluid in an eccentric uniform annulus in the 
presence of external uniform magnetic field. 

 The present paper extends the work of El-Sayed et al. [25] to include porous medium 
and nanofluid with different non-Newtonian fluid (biviscosity model). The following analysis 
includes slip velocity boundary condition. The fundamental equations which govern this flow 
have been modeled under long-wave-length assumption and a closed form for the axial velocity 
is presented. Homotopy perturbation solutions for the energy and nanoparticles equations are 
obtained. Also, the reduced Nusselt number and Sherwood number at the outer annulus are 
obtained and tabulated for positive and negative eccentricity. The relation between the different 
parameters of motion is studied in order to investigate how to control the motion of the fluid by 
changing these parameters. 

Mathematical formulation 

 The flow with heat transfer of an incompressible non-Newtonian nanofluid obeying 
biviscosity model through a porous medium in the gap between two eccentric uniform annulus 
is considered. The inner annulus is rigid and at rest, while the outer annulus has a sinusoidal 
wave traveling down its wall. A cylindrical co-ordinate system (r, ψ, z) is chosen for the annuli 
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with r in the radial direction, z along the center line, the inner annulus is at r = ri and kept at a 
temperature Ti , while the outer annulus is at r = ro and kept at a temperature To , the equation 
for the outer surface is [25]: 

 2 2 2( , , ) e sin ecosoR r z r      (1) 
where 

 2cos ( )o or R b z c t


    (2) 

where e is the eccentricity, Ro – the radius of the outer annulus at inlet, b – the wave amplitude, 
 – the wave-length, c – the wave velocity, and t – the time.  

The biviscosity model [13] can be written: 
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We introduce the following non-dimensional parameter  = µB(2πc)1/2 / py, where py 
is the yielding stress, π = eij eij , where eij is the (i, j) component of the deformation rate and the 
value of  denotes the upper limit of apparent viscosity coefficient. For ordinary Newtonian 
fluid (py = 0). 

 Since the flow parameters are independent of the azimuthal co-ordinate ψ, the veloc-
ity is given by VሬሬԦ = (u, 0, w). A uniform magnetic field BሬሬԦ = (0, B0, 0) is applied in a transverse 
direction. The governing continuity, momentum, temperature, and nanoparticles equations are:  
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where u and w are the velocities in the r- and z-directions, respectively, ρf and ρp – the density of 
the fluid and the particles, respectively, P – the fluid pressure, kp – the permeability of the porous 
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medium,  – the electrical conductivity of the fluid, T – the fluid temperature, k – the thermal con-
ductivity of the fluid, (ρc) and (ρc)p are the heat capacity of the fluid and effective heat capacity of 
the nanoparticle material, respectively, qr is the radiative heat flux, f – the nanoparticle phenomena, 
DB – the Brownian diffusion coefficient, and DT – the

 
thermophoretic diffusion coefficient. 

Non-Newtonian nanofluid has a slip velocity, which is expressed as [25]: 
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where λm is the mean free path of the fluid molecules and γv depends on the interaction proper-
ties of fluid with the surface. The boundary conditions for this system are given by: 
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The appropriate non-dimensional variables for the flow are defined: 
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where L is the mean annular gap width, δ – the wave number, ε – the dimensionless, φ – ampli-
tude ratio, Re – the Reynolds number, M – the magnetic parameter, Da – the Darcy number, Ra 
– the radiation parameter, Ec – the Eckert number, Pr – the Prandtl number, Br – the Brinkman 
number, Nt – the thermophoresis parameter, and Nb – the Brownian motion parameter. 

Next, Rosseland approximation [26] is assumed, which leads to the radiative heat flux, 
qr , given by: 
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where * is the Stefan Boltzmann constant and kR – the mean absorption coefficient. Assuming 
that the temperature differences are sufficiently small such that T4 may be expressed as a linear 
function of temperature, then Taylor series for T4 about To, after neglecting higher order terms, 
is given by [26]: 
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 With the help of eq. (11) and after dropping the star mark for simplicity, eqs. (4)-(8) 
under the assumptions of long wavelength and low-Reynolds number approximation take the form: 
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Thus, the boundary conditions (10) in their dimensionless form read: 
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where  
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Here Ro = 1 / (1 – r*), ri = r* / (1 – r*), r* = ri / Ro is the radius ratio, and r*, and  
Kn = λm / L where Kn is Kundsen number. 

Method of solution 

The closed solution for the axial velocity w(r, z) are given by: 
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 The homotopy perturbation method (HPM), is a series expansion method used in the 
solution of non-linear ordinary and partial differential equations. The method employs a ho-
motopy transform to generate a convergent series solution of differential equations. In view of 
the HPM [27-29], eqs. (17) and (18) satisfy the following relations: 
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with L = δ2
 / δr2 + (1 / r) (δ / r δr) as the linear operator, the initial approximations θ10 and f10 can 

be defined: 
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The basic assumption is that the solution of eqs. (21) and (22) can be expanded as a 
power series in p: 
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The solution of temperature and nanoparticle phenomenon (for p =1) are constructed: 
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  
1 1 1 1,0,0, 0,0, ,
2 2 2 22 5 23

19 18 46 3 21 46 3
1 11, 1, 1,1,1, 0,1, 1, 1, 1,
2 2

1 12 ln 2 , 2 ,
2 2

a r a G a r a G a r
 

       

   
     
   
   

  (28) 
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 The mathematical formulas of the constants a1 – a38 are not included here. However, 
they are available upon request from the author. 

 Now, the reduced Nusselt number, Nur, and Sherwood number, Sh, at the outer an-
nulus are defined, respectively: 

  Nu
o

r
r rr









, Sh
or r

f
r 





 (29)  

Numerical results and discussion 

In order to get an insight into the physical situations of the problem, we have com-
puted numerical values of the axial velocity, temperature, and nanoparticles phenomena for 
different values of various parameters occurring in the problem. 

 The effects of physical parameters on the temperature distribution are indicated 
through figs. 1-4. Figures 1 and 2 show the effect of Br on the temperature profiles with the 
radial co-ordinate, r, in the cases when the eccentricity ε is positive and negative, respectively. 
It is observed from fig. 1 that as Br increases the temperature increases, when ε > 0, it is also 
noted that the difference of the temperature for different values of Br becomes greater with 
increasing the radial co-ordinate and reaches maximum value after which it decreases. Figure 
2 shows that, for ε < 0, the curves are found to be similar to the curves in fig. 1, with the only 
difference that the temperature decreases as Br increases near the outer annuli, namely when  
r ∈	[1.2, 2.5]. The effects of Da, Nb, and ß on the temperature T are found to be exactly similar 
to the effect of Br given in figs. 2(a) and 2(b). Similar result to that shown in fig. 1 can be 
obtained if Br is replaced by Da with the only difference that the obtained curves are very close 
to those obtained in fig. 2.  
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Br = 2.5, 8, 15

0.6              0.8              1.0              1.2

2.0

1.5
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0.5

0.0

Br = 2.5, 8, 15

0.6          0.8          1.0          1.2          1.4  

Figure 1. The temperature profiles  
are plotted vs. r for different  
values of Br for a system have the  
particulars: ε = 0.1 ࢼ	0.9 =, Da = 0.05,  
M = 3, Ra = 1, Pr = 1.5, Nb = 3.5, Nt = 2.5,  
z = 1, r* = 0.33, dP/dz = 5, γν = 0.2,  
Kn = 0.05, ψ = 0, t = 0.3, and = 0.41 

Figure 2. The temperature profiles  
are plotted vs. r for different  
values of Br for a system have the  
particulars: ε =	െ0.1 ࢼ	0.9 =, Da = 0.05,  
M = 3, Ra = 1, Pr = 1.5, Nb = 3.5, Nt = 2.5,  
z =1, r* =0.33, dP/dz = 5, γν = 0.2,  
Kn = 0.05, ψ = 0, t = 0.3, and = 0.41 

Figure 3 shows the variation of T with the radial co-ordinate, r, various values of radiation 
parameter Ra when the eccentricity ε > 0. It is found that the temperature, T, decrease with the 
increase of Ra. Also, it is indicated that T decreases with r till a maximum value (represents the 
maximum value of T ), value after which it decreases and the obtained curves coincide near the outer 
annuli. Figure 4 illustrates the effect of the thermophoresis parameter Nt on the temperature  



 Abou-Zeid, M.,: Homotopy Perturbation Method for MHD Non-Newtonian ... 
2076 THERMAL SCIENCE, Year 2017, Vol. 21, No. 5, pp. 2069-2080 

distribution T when the eccentricity ߝ is negative. It is found that the temperature T increases by 
increasing Nt in the intervals r ∈ [0.5, 0.9]	∪ [1.3, 2.5]; otherwise it decreases by increasing Nt. 
So, the behavior of T in the interval r ∈ [0.9, 1.3], is an inversed manner of its behavior in the 
other intervals. In this case, for each value of Nt, there are maximum values of T hold at r = 0.7, 
1.8. Similar result to that shown in fig. 4 can be obtained if Nt is replaced by Da with the only 
difference that the obtained curves are very close to those obtained in fig. 4. 
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Figure 3. The temperature profiles  
are plotted vs. r for different  
values of Ra for a system have the  
particulars: ε = 0.1 ࢼ	0.9 =, Da = 0.05,  
M = 3, Br = 2.5, Pr = 1.5, Nb = 3.5,  
Nt = 2.5, z = 1, r*= 0.33, dP/dz = 5,  
γν = 0.2, Kn = 0.05, ψ = 0, t = 0.3, and = 0.41 

Figure 4. The temperature profiles  
are plotted vs. r for different  
values of Nt for a system have the  
particulars: ε =	െ0.1 ࢼ	0.9 =, Da = 0.05,  
M = 3, Br =2.5, Ra = 1, Pr = 1.5,  
Nb = 3.5, z = 1, r* = 0.33, dP/dz = 5,  
γν = 0.2, Kn= 0.05, ψ = 0, t = 0.3, and = 0.41 

The nanoparticles phenomena f for different values of Nb when ε > 0 is shown in fig. 5, 
and it is shown that the nanoparticles phenomena f increases by increasing Nb in the range of r 
shown in the figure, namely in the interval r ∈ [0.5, 1.1], otherwise it decreases as with the 
increase of Nb. Also for small values of Nb, the nanoparticles phenomena decreases with r, till 
a minimum value (at a finite value of r : r = r0) after which it increases. Also, it is clear that the 
minimum of f decreases by increasing Nb and this also occurs at another value r < r0.  

Figure 6 reveals the influence of Da on the nanoparticles phenomena f when the ec-
centricity ߝ is negative. It is indicated that the nanoparticles phenomena f decreases with the 
increasing of Da in the interval r ∈ [0.5, 0.9], whereas it increases as Da increases when r ∈ 
[0.9, 1.5]. It is also noted that f is always positive, and it decreases as r increases, and reaches 
minimum value (at a finite value of r : r = r0) after which it increases and reaches maximum 
value at another value of r. The effects of the other parameters are found to be similar to them 
and these figures are excluded here to avoid any kind of repetition. 

Figures 7 and 8 illustrate the change of the axial velocity w vs. the radial co-ordinate 
r with several values of the upper limit apparent viscosity coefficient  and magnetic parameter 
M, respectively, when the eccentricity ε > 0. It is seen, from figs. 7 and 8, that the axial velocity 
increases with the increase of , whereas it decreases as M increases, respectively. It is also 
noted that the difference of the axial velocity for different values of  and M becomes greater 
with increasing the radial co-ordinate and reaches maximum value after which it decreases. 
Note that the maximum value of w increases by increasing  and M and this also occurs at 
another value r >r0. The effects of Da on the axial velocity w are found to be exactly similar to 
the effect of  given in fig. 7. 
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Figure 5. The nanoparticles profiles  
are plotted vs. r for different  
values of Nb for a system have the  
particulars: ε = 0.1 ࢼ	0.9 =, Da = 0.05,  
M = 3, Br = 2.5, Ra = 1, Pr = 1.5, Nt = 2.5,  
z = 1, r* = 0.33, dP/dz = 5, γν = 0.2,  
Kn = 0.05, ψ = 0, t = 0.3, and = 0.41 

Figure 6. The nanoparticles profiles  
are plotted vs. r for different  
values of Da for a system have  
the particulars: ε =	െ0.1 ࢼ	0.9 =,  
M = 3, Br = 2.5, Ra = 1, Pr = 1.5, Nb = 3.5,  
Nt = 2.5, z = 1, r* = 0.33, dP/dz = 5,  
γν = 0.2, Kn = 0.05, ψ = 0, t = 0.3, and = 0.41 
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Figure 7. The axial velocity profiles  
are plotted vs. r for different  
values of ࢼ for a system have the  
particulars: ε = 0.1, Da = 0.05, M = 3,  
Br = 2.5, Ra = 1, Pr = 1.5, Nb = 3.5,  
Nt = 2.5, z = 1, r* = 0.33, dP/dz = 5,  
γν = 0.2, Kn = 0.05, ψ = 0, t = 0.3, and = 0.41 

Figure 8. The axial velocity profiles  
are plotted vs. r for different  
values of M for a system have 
the particulars: ε = 0.1 ࢼ	0.9 =, Da = 0.05,  
Br = 2.5, Ra = 1, Pr = 1.5, Nb = 3.5,  
Nt = 2.5, z =1, r* = 0.33, dP/dz = 5,  
γν = 0.2, Kn = 0.05, ψ = 0, t = 0.3, and = 0.41 

Tables 1 and 2, presents numerical results for the quantities τ, Nur and Sh which are 
representative of the skin friction, the reduced Nusselt number and Sherwood number respec-
tively, for various values of all parameters when the eccentricity ߝ is positive and negative. It 
is clear from tab. 1 that an increase in Darcy number and the upper limit apparent viscosity 
coefficient ߚ gives an increase in the values of quantities ߬  and Sh but decreases the dimension-
less quantity Nur. Also, an increase in the magnetic parameter M gives an opposite behavior to 
both Da and	ߚ. The values of both Nur and Sh for various values of Prandtl number, the ther-
mophoresis parameter, and Brownian motion parameter are presented in tab. 2.  

It is noted that the dimensionless quantities Nur and Sh increase as Pr and Nt increase. 
But an increase in Nb gives an increase in the values of dimensionless quantity Nur but decreas-
ing in the dimensionless quantity Sh. 
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Table 1. Values of τ, Nur and Sh for various values of Da, M, ß, and ε 

Da M     Nur Sh 

0.01 
0.03 
0.03 

3 
3 
5 

0.7 
0.7 
0.7 

0.1
0.1 
0.1

1.66146
2.56945 
2.52113

0.500380
0.465635 
0.467466

–0.0413883 
0.108033 
0.0974556 

0.05 
0.05 
0.05 

5 
3 
10 

0.9 
0.9 
0.9 

0.1
–0.1 
–0.1

3.27771
3.53477 
3.19185

0.44354
1.68000 
1.66650

0.217413 
0.647790 
0.543476 

0.02 
0.03 
0.03 

10 
10 
10 

0.9 
0.9 
0.8 

–0.1
–0.1 
–0.1

2.35479
2.73227 
2.63637

1.66023
1.65885 
1.66196

0.357319 
0.429574 
0.432834 

Table 2. Values of Nur and Sh for various values of Pr, Nb, Nt, and ε 

Pr Nb Nt  Nur Sh 

1.5 
2.5 
2.5 

3.5 
3.5 
2.5 

2.5
2.5 
2.5

0.1
0.1 
0.1

0.44354
3.39631 
2.88382

0.217413 
0.707577 
1.25146 

3.5 
3.5 
3.5 

2.5 
3.5 
2.5 

3.5
3.5 
3.5

0.1
–0.1 
–0.1

9.84313
10.9901 
9.84313

3.15414 
2.08812 
3.15414 

1.5 
2.5 
2.5 

2.5 
2.5 
2.5 

3.5
3.5 
2.5

–0.1
–0.1 
–0.1

1.18259
4.56347 

–0.333592

1.23269 
2.19342 

–0.451928 

Conclusions 

The MHD peristaltic mechanism with heat transfer of an incompressible non-Newto-
nian nanofluid through a porous media in eccentric annuli with slip velocity condition at the wall, 
and under the consideration of long wave-length and low-Reynolds number has been studied. The 
expressions of the axial velocity is obtained in a closed form, while the solutions for energy and 
nanoparticles equations are obtained by using HPM. Also, the reduced Nusselt number and Sher-
wood number at the outer annulus are obtained and tabulated for positive and negative eccen-
tricity. The results of this problem are of great importance in many industrial heating or cooling 
equipments. The nanoparticles are typically made up of metals, oxides, and carbides or carbon 
nanotubes. The main findings from the current study can be summarized as follows. 
 The nanoparticles phenomena f decreases with increasing each of , Nt, Da, Br and Pr. It 

increases near the outer annuli in case of Da and Br, whereas it increases by increasing 
values of M, Nb and Ra. 

 The nanoparticles phenomena f is always positive, and there is an inverse relation between 
f and the radial co-ordinate r. 

 The temperature θ has an opposite behavior compared to nanoparticles behavior except that 
it increases or (decreases) with the increase of both Nb and Pr. 

 The temperature θ for different values of all parameters of the problem and for positive 
eccentricity ε, increases by increasing the radial co-ordinate r and reaches maximum value 
(at a finite value of r : r = r0) after which it decreases. 

 Oscillatory behavior is observed in all figures for the temperature T when the eccentricity 
ε is negative.  
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 The axial velocity w for both positive and negative values of eccentricity ε, increases with 
the increase each of  and Da, while it decreases as M increase. 

 By increasing the radial co-ordinate r, the axial velocity w for different values of , Da, γ, 
and M becomes greater and larger and reaches maximum value, after which it decreases. 

 The skin-friction distribution  decreases by increasing M, while it increases as Da and  
increase. This occurs for positive and negative eccentricity. 

 For positive values of eccentricity ε, Nusselt number increases, by increasing each of M, 
Pr, Nb, and Nt whilst it decreases as Da and  increases. 

 Sherwood number has an opposite behavior compared to Nusselt number. 
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