THERMAL SCIENCE
International Scientific Journal
THERMOHYDRAULIC PERFORMANCE COMPARISION OF COMPOUND INSERTS FOR A TURBULENT FLOW THROUGH A CIRCULAR TUBE
ABSTRACT
Heat transfer and pressure drop characteristics of three different passive inserts are experimentally investigated for individual and compound insertion. Insert cross-section is altered along the length of test section for compound insertion. Test runs were conducted in a concentric circular tube in tube heat exchanger in the Reynolds number range of 8000 to 32000 with water as a working fluid. Enhancements in Nusselt number and friction factors are reported to be in the range of 38-234% and 55-524%, respectively, over plain tube. The average performance ratios based on equal pumping power are also reported and found in the range of 0.63-1.53. Based on experimental results, optimum combination for compound insertion is proposed.
KEYWORDS
PAPER SUBMITTED: 2015-10-27
PAPER REVISED: 2015-12-26
PAPER ACCEPTED: 2016-04-09
PUBLISHED ONLINE: 2016-05-08
THERMAL SCIENCE YEAR
2017, VOLUME
21, ISSUE
Issue 3, PAGES [1309 - 1319]
- Kumar, A., Prasad, B., Investigation of Twisted Tape Inserted Solar Water Heaters-Heat Transfer, Friction Factor and Thermal Performance Results, Renewable Energy, 19 (2000), 3, pp. 379-398
- Chen, J., Muller, S., Duffy, G., G., Heat Transfer Enhancement in Dimpled Tubes, Applied Thermal Engineering, 21 (2001), 5, pp. 535-547
- Yilmaz, M., Comakli, O., Yapici, S., Sara, O., N., Heat Transfer and Friction Factor Characteristics in Decaying Swirl Flow Generated by Different Radial Guide Vane Swirl Generators, Energy Conservation and Management, 44 (2003), 2, pp. 283-300
- Paisarn, N., Effect of coil-wire insert on heat transfer enhancement and pressure drop of horizontal concentric tubes, International Communications in Heat and Mass Transfer, 33 (2006), pp. 753-763
- Naphon, P., Nuchjapo, M., Kurujareon, J., Tube Side Heat Transfer Coefficient and Friction Factor Characteristics of Horizontal Tubes with Helical Rib, Energy Conservation and Management, 47(2006), 18-19, pp. 3031-3044
- Li, X., Meng, J., Guo, Z., Turbulent flow and heat transfer in discrete double inclined ribs tube, International Journal of Heat and Mass Transfer, 52 (2009), pp. 962-970
- Seemawute, P., Eiamsa-ard, S., Thermohydraulics of turbulent through a round tube by a peripherally -cut twisted tape with an alternate axis, International Communications in Heat and Mass Transfer, 37(2010), pp. 652-659
- Eiamsa-ard, S., Wongcharee, K., Eiamsa-ard, P., Thianpong C., Heat Transfer Enhancement in a Tube Using Delta-Winglet Twisted Tape Inserts, Applied Thermal Engineering, 30 (2010), 4, pp. 310-318
- Eiamsa-ard, S., Seemawute, P., Wongcharee, K., Influences of peripherally-cut twisted tape insertion on heat transfer and thermal performance characteristics in laminar and turbulent tube flows, Experimental Thermal and Fluid Science, 34 (2010), pp. 711-719
- Kongkaitpaiboon, V., Nanan, K., Eiamsa-ard, S., Experimental Investigation of Heat Transfer and Turbulent Flow Friction in a Tube Fitted with Perforated Conical-Rings, International Communications in Heat and Mass Transfer, 37 (2010), 5, pp. 560-567
- Liu, S., Sakr, M., A Comprehensive Review on Passive Heat Transfer Enhancements in Pipe Exchangers, Renewable and Sustainable Energy Reviews, 19 (2013), pp. 64-81
- Promvonge, P., Eiamsa-ard, S., Heat Transfer Enhancement in a Tube with Combined Conical-Nozzle Inserts and Swirl Generator, Energy Conservation and Management, 47 (2006), 18-19, pp. 2867-2882
- Promvonge, P., Eiamsa-ard, S., Heat Transfer Behaviors in a Tube with Combined Conical-Ring and Twisted-Tape Insert, International Communications in Heat and Mass Transfer, 34 (2007), 7, pp. 849-859
- Promvonge, P., Thermal Augmentation in Circular Tube with Twisted Tape and Wire Coil Turbulators, Energy Conservation and Management, 49 (2008), 11, pp. 2949-2955
- Thianpong, C., Eiamasa-ard, P., Wongcharee, K., Eiamsa-ard, S., Compound Heat Transfer Enhancement of a Dimpled Tube with a Twisted Tape Swirl Generator, International Communications in Heat and Mass Transfer, 36 (2009), 7, pp. 698-704
- Promvonge, P.,Chompookham, T., Kwankaomeng, S., Thianpong, C., Enhanced Heat Transfer in a Triangular Ribbed Channel with Longitudinal Vortex Generators, Energy Conservation and Management, 51(2010), 6, pp. 1242-1249
- Saha, S. K., Thermohydraulics of Turbulent Flow through Rectangular and Square Ducts with Axial Corrugation Roughness and Twisted-Tapes with and without Oblique Teeth, Experimental Thermal and Fluid Science, 34 (2010), 6, pp. 744-752
- Garcia, A., Solano, J., Vicente, P., Viedma, A., The influence of artificial roughness shape on heat transfer enhancement: Corrugated tubes, dimpled tubes and wire coils, Applied Thermal Engineering, 35 (2012), pp. 196-201
- Incropera, F., Dewitt, P., Fundamentals of Heat and Mass Transfer, Wiley, India, 2010
- Deshmukh, P., Vedula, R., Heat transfer and pressure drop characteristics of turbulent flow through circular tube fitted with vortex generator inserts, International Journal of Heat and Mass Transfer, 79 (2014), pp. 551-560
- Guo, J., Yan, Y., Jiang, F., Fan A., Effects of upwind area of tube inserts on heat transfer and flow resistance characteristics of turbulent flow, Experimental Thermal and Fluid Science, 48 (2013), pp. 147- 155