International Scientific Journal


A computational fluid dynamics (CFD) model is used to compare the effect of different Reynolds Averaged Navier-Stokes (RANS) based turbulence models in predicting the temperature separation and power separation in a Ranque-Hilsch vortex tube. Three first order turbulence models (standard k-ε, Renormalized group RNG and shear stress transport (SST) K-ω model) together with a second order numerical scheme are surveyed in the present work. The simulations are done in 2D steady, axisymetric with high swirl flow model. The performance curves (hot and cold outlet temperatures and power separation versus hot outlet mass fraction) obtained by using these turbulence models are compared with the experimental results in different cold mass fractions. The aim is to select an appropriate turbulence model for the simulation of the flow phenomena. Because of large discrepancy between 2D and experiment, validation in 3D model is also considered. The performance analysis shows that among all the turbulence models investigated in this study, temperature separation predicted by the Renormalized group RNG model is closer to the experimental results.
PAPER REVISED: 2012-02-13
PAPER ACCEPTED: 2012-10-24
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2014, VOLUME 18, ISSUE Issue 4, PAGES [1159 - 1171]
  1. R.B. Aronson, Vortex tube cooling with compressed air," Journal of Machine Design. 48 (1976) pp.140-143.
  2. Ranque, G.J, Experiences la détente giratoire avec simultanes d`un enchappement d`air chaud et d`un enchappement d`air froid, Journal of Phys.Radium, 4 (1933), pp.112-114.
  3. Hilsch, R., Die expansion von gases im zentrifugalfeld als kälteproze, Z. Naturforschung, 1(1946), pp. 208-214.
  4. Fulton CD, Comments on the vortex tube, Journal of ASRE Refrigeration Engineering, 59(1951), pp. 984
  5. Kassner R, Knoernschild E, Friction laws and energy transfer in circular flow, Wright-Patterson air force basr. Technical report (1948), F-TR-2198ND OH.
  6. Scheper GW, The vortex tube internal flow data and a heat transfer theory, Journal of ASRE Refrigeration Engineering, 59 (1951), pp. 985-989.
  7. Ahlborn, B., J. Gordon, The vortex as classical thermodynamic refrigeration cycle,. Journal of Applied Physics. 88 (2000), pp. 3645-3653.
  8. Stephan,K., S. Lin, M. Durst, f. Huang, D.Seher, An investigation of energy sepration in a vortex tube, , International Journal of Heat and Mass Transfer, 26(1983), pp. 341-348.
  9. Gutsol, A.F., The Ranque effect, Journal of Physics, Uspekhi, 40 (1997), pp. 639-658.
  10. Kurosaka, M., Acoustic streaming in swirling flows, Journal of Fluid Mechnics, 124 (1982), pp. 139-172.
  11. Frohlingsdorf, W., H. Unger, Numerical investigation of the compressible flow and the energy separation in the Ranque-Hilsch vortex tube, International Journal of Heat and Mass Transfer, 42 (1999), pp. 415-422.
  12. Promvonge P, Numerical simulation of turbulent compressible vortex-tubes flow, The third ASME/JSME International Journal of Fluid Engineering, Sanfrancisco, USA, (1999).
  13. Behera, U., P.J. Paul, S. Kasthurirengan, R. Karunanithi, S.N. Ram, K.Dinesh and S. Jacob, CFD analysis and experimental investigation towards optimizing the parameter of Ranque-Hilsch vortex tube, International Journal of Heat and Mass Transfer,48 (2005), pp. 1961-1973.
  14. Aljuwayhel, N.F., G.F. Nellis and S.A. Klein, Parametric and internal study of the vortex tube using a CFD model, International Journal of Refrigeration,28 (2005), pp. 442-450.
  15. Skye, H.M., G.F. Nellis and S.A. Klein, Comparison of CFD analysis to empirical data in a commercial vortex tube, International Journal of Refrigeration, 29 (2006), pp. 71-80.
  16. Chang, H.S., Experimental and numerical studies in a vortex tube, Journal of Mechanical Science and Technology, 20 (2006), 3, pp. 418-425. Akhesmeh S., Pourmahmoud N., Sadeghi H.,
  17. Xue Y., Arjomandi M., Kelso R., A Critical Review of Temperature Separation in a Vortex Tube, Journal of Experimental Thermal and Fluid Science, 34 (2010), 8, pp. 1367-1374.
  18. Numerical Study of Temperature separation in a Rangue-Hilsch Vortex Tube, American Journal of Engineering and Applied Science, 1 (2008), 3, pp.181-187.
  19. V. Kimaci , Optimization of Counter flow Ranque-Hilsch Vortex Tube performance using Taguchi Method, International Journal of Refrigeration, 32 (2009), 7, pp.1487-1494.
  20. A. Hossein Nezhad, R. Shamsoddini, Numerical Three-Dimensional Analysis of the Mechanism of Flow and Heat Transfer in a Vortex Tube, Thermal Science, 13 (2009), 4, pp. 183-196.
  21. Barmo A. R., Pourmahmoud N., Computational Fluid Dynamics Simulation Of Length to Diameter Ratio Effect on the Energy Separation in a Vortex Tube, Thermal Science, 15 (2011), 3, pp.833-848.
  22. Tanvir Farouk, Bakhtier Farouk, Large eddy Simulations of the Flow Field and temperature separation in the Ranque-Hilsch vortex tube, International Journal of Heat and Mass Transfer, 50 (2007), 23-24, pp.4724-4735
  23. T.Dutta, K.P. Sinhamahapatra, S.S. Bandyopdhyay, Comparison of Different Turbulence Models in Predicting the Temperature Separation in a Ranque- Hilsch Vortex Tube, International Journal of Refrigeration, 33 (2010), 4, pp.783-792.

© 2023 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence