THERMAL SCIENCE

International Scientific Journal

SQUEEZED FLOW AND HEAT TRANSFER IN A SECOND GRADE FLUID OVER A SENSOR SURFACE

ABSTRACT
An analysis has been carried out for the hydromagnetic flow and heat transfer over a horizontal surface located in an externally squeezed free stream. Mathematical formulation is developed by using constitutive equations of a second grade fluid. The resulting problems have been solved by a homotopy analysis method (HAM). In addition the skin friction coefficient and Nusselt number are tabulated. The physical quantities of interest are analyzed for various emerging parameters.
KEYWORDS
PAPER SUBMITTED: 2011-07-10
PAPER REVISED: 2011-10-22
PAPER ACCEPTED: 2011-10-26
DOI REFERENCE: https://doi.org/10.2298/TSCI110710139H
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2014, VOLUME 18, ISSUE Issue 2, PAGES [357 - 364]
REFERENCES
  1. Langlois,W, E., Isothermal squeeze films. Quarterly of Applied Mathematics XX: (1962) pp. 131-150.
  2. Damodaran, S, H., Rankin, G, W., Zhang, C., Effect of a moving boundary on pulsatile flow of incompressible fluid in a tube. Computational Mechanics. 23, (1999) pp. 20-32.
  3. Bhattacharjee, R,C., Das, N, C., Pal, A, K., Analysis of unsteady squeezing flow of dust fluids. Tribology International. 32, (1999) pp. 427-434.
  4. Hamza, E, A. Unsteady flow between two disks with heat transfer in the presence of magnetic field. Journal Phy D: Appl Phys. 25, (1992) pp. 1425-1431.
  5. Bhatyacharyya, S., Pal, A., Nath, G., Unsteady flow and heat transfer between rotating coaxial disks. Numerical Heat Transfer Part A, 30, (1996) pp. 519-532.
  6. Debbaut, B., Non-isothermal and viscoelastic effects in the squeeze flow between infinite plates. Journal Non-Newtonian Fluid Mechanics. 98, (2001) pp. 15-31.
  7. Khaled, A.-R, A., Vafai, K., Hydromagnetic squeezed flow and heat transfer over a sensor surface. International Journal Engineering Science. 42, (2004) pp. 509-519.
  8. Mahmood, M., Asghar, S., Hossain, M, A., Squeezed flow and heat transfer over a porous surface for viscous fluid. Heat Mass Transfer. 44, (2007) pp. 165-173.
  9. Abbasbandy, S., Homotopy analysis method for the Kawahara equation. Nonlinear Analysis: Real World Applications. 11, (2010) pp. 307-312.
  10. Cheng-shi, Liu., The essence of the homotopy analysis method. Applied Mathematics and Computation. 216, (2010) pp. 1299-1303.
  11. Liao, S, J., Beyond perturbation: introduction to homotopy analysis method. Boca Raton: Chapman & Hall/CRC Press (2003).
  12. S. Liao, S.: A short review on the homotopy analysis method in fluid mechanics. Journal of Hydrodynamics, Series. B. 22, (2010) pp. 882-884.
  13. Hayat, T., Naz, R., Sajid, M., On the homotopy solution for Poiseuille flow of a fourth grade fluid. Communications in Nonlinear Science and Numerical Simulation. 15, (2010) pp. 581-589.
  14. Hayat, T., Qasim, M., Abbas, Z., Homotopy solution for the unsteady three-dimensional MHD flow and mass transfer in a porous space. Communications in Nonlinear Science and Numerical Simulation. 15, (2010) pp. 2375-2387.
  15. Dinarvand, S., Doosthoseini, A., Doosthoseini., E, Rashidi, M, M., Series solutions for unsteady laminar MHD flow near forward stagnation point of an impulsively rotating and translating sphere in presence of buoyancy forces. Nonlinear Analysis: Real World Applications. 11, (2010) pp. 1159-1169.
  16. Hayat, T., Javed, T., On analytic solution for generalized three-dimensional MHD flow over a porous stretching sheet. Physics Letters A, 370, (2007) pp. 243-250.
  17. Abbasbandy, S., Yurusoy, M., Pakdemirli, M., The Analysis Approach of Boundary Layer Equations of Power-Law Fluids of Second Grade. Zeitschrift fur Naturforschung A, 63(a) (2008) pp. 564-570.
  18. Tan, Y., Abbasbandy, S., Homotopy analysis method for quadratic Ricati differential equation. Communications in Nonlinear Science and Numerical Simulation. 13, (2008) pp. 539-546.
  19. Abdallah, I. A., Analytical solution of heat and mass transfer over a permeable stretching plate affected by a chemical reaction, internal heating, Dufour-Souret effect and hall effect, Thermal Science, 13, (2009) pp. 183-197.

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence