International Scientific Journal

Authors of this Paper

External Links


Vortex shedding patterns in flow past inline oscillating elliptical cylinder are simulated by lattice Boltzmann and direct forcing/fictitious domain method which is validated by finite volume method when this cylinder is fixed. The modes of vortex shedding are analyzed in detail by changing the amplitude and the frequency of oscillation by using the first method in this paper.
PAPER REVISED: 2012-09-05
PAPER ACCEPTED: 2012-09-12
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2012, VOLUME 16, ISSUE Issue 5, PAGES [1395 - 1399]
  1. Griffin, O. M., Ramberg, S. E., The Vortex-street Wakes of Vibrating Cylinders, J. Fluid Mech., 66 (1974), 3, pp. 553-576
  2. Ongoren, A., Rockwell, D., Flow Structure from an Oscillating Cylinder. Part 2. Mode Competition in the Near Wake, J. Fluid Mech., 191 (1988), 1, pp. 225-245
  3. Konstantinidis, E., Balabani, S., Symmetric Vortex Shedding in the Near Wake of a Circular Cylinder due to Streamwise Perturbations, J. of Fluids and Structures, 23 (2007), 7, pp. 1047-1063
  4. Xu, S., Zhou, Y., Wang, M., A Symmetric Binary-vortex Street Behind a Longitudinally Oscillating Cylinder, J. Fluid Mech., 556 (2006), 1, pp. 27-43
  5. Ku, X. K., Lin, J. Z., Numerical Simulation of the Flows over Two Tandem Cylinders by Lattice Boltzmann Method, Modern Physics Letters B, 19 (2005), 28-29, pp. 1551-1554
  6. Guo, X. H., et al., Flow Past Two Rotating Circular Cylinders in a Side-by-Side Arrangement, Journal of Hydrodynamics, 21 (2009), 2, pp. 143-151
  7. Guo, X. H., Lin, J. Z., Nie, D. M., Vortex Structures and Behavior of Flow Past Two Rotating Circular Cylinders Arranged Side-by-Side, Chinese Physics Letter, 26 (2009), 8, 084701, pp. 1-4
  8. Jiang, R. J., Lin, J. Z., Wall Effects on Flows Past Two Tandem Cylinders of Different Diameters, Journal of Hydrodynamics, 24 (2012), 1, pp. 1-10
  9. Srikanth, T., et al., Vortex Shedding Patterns, Their Competition, and Chaos in Flow Past Inline Oscillating Rectangular Cylinders, Physics of Fluids, 23 (2011), 7, pp. 073603
  10. Ladd, A. J. C., Numerical Simulations of Particulate Suspensions via a Discretized Boltzmann Equation, Part I. Theoretical Foundation, J. Fluid Mech., 271 (1994), 1, pp. 285-310
  11. Lin, J. Z., Shi, X., You, Z. J., Effects of the Aspect Ratio on the Sedimentation of a Fiber in Newtonian Fluids, Journal of Aerosol Science, 34 (2003), 7, pp. 909-921
  12. Shi, X., Lin, J. Z., Yu, Z. S., Discontinuous Galerkin Spectral Element Lattice Boltzmann Method on Triangular Elementing, International Journal for Numerical Methods in Fluids, 42 (2003), 11, pp. 1249- 1261
  13. Lin, J. Z., Wang, Y. L., Olson, J. A., Sedimentation of Rigid Cylindrical Particles with Mechanical Contacts, Chinese Physics Letters, 22 (2005), 3, pp. 628-631
  14. Lin, J. Z., Ku, X. K., Fiber Orientation Distributions in a Suspension Flow through a Parallel Plate Channel Containing a Cylinder, Journal of Composite Materials, 43 (2009), 12, pp. 1373-1390
  15. Lin, J. Z., Ku, X. K., Inertial Effects on the Rotational Motion of a Fiber in Simple Shear Flow between Two Bounding Walls, Physica Scripta, 80 (2009), 2, pp. 025801
  16. Nie, D. M., Lin, J. Z., A LB-DF/FD Method for Particle Suspensions, Communications in Computational Physics, 7 (2010), 3, pp. 544-563

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence