THERMAL SCIENCE
International Scientific Journal
NON-DARCY POROUS MEDIA FLOW IN NO-SLIP AND SLIP REGIMES
ABSTRACT
In this paper Lattice Boltzmann equation method is used to simulate non- Darcy flow in porous media. Two-dimensional in-line and staggered arrangements of uniform cylinders have been considered. The results of a comprehensive computational evaluation are reported: the range of validity of Darcy-Forchheimer equation is investigated and correlations for macroscopic transport properties are presented (i.e., for the permeability and the inertial parameter). Our investigation covers both no-slip and the slip-flow regimes.
KEYWORDS
PAPER SUBMITTED: 2010-09-29
PAPER REVISED: 2012-01-16
PAPER ACCEPTED: 2012-01-17
THERMAL SCIENCE YEAR
2012, VOLUME
16, ISSUE
Issue 1, PAGES [167 - 176]
- Vafai, K., Handbook of Porous Media. Marcel Dekker, New York, USA, 2000
- Nield, D., Bejan, A., Convection in Porous Media. Springer, New York, USA, 1998
- Beskok, A., Karniadakis, G. E., Simulation of Heat and Momentum Transfer in Complex Microgeometries, J. Thermophys. Heat Transfer, 8 (1994) pp. 647- 65
- Karniadakis, G. E., Beskok, A., Microflows: Fundamentals and Simulation. Springer, New York, USA, 2002
- Miguel, A. F., Serrenho, A., On the experimental evaluation of the permeability in porous media using a gas flow method, Journal of Physics D, 40 (2007) pp. 6824-6828
- Beskok, A., Karniadakis, G. E., A model for flows in channels, pipes, and ducts at micro and nano scales, Microscale Thermophys. Engng, 3 (1999) pp. 43-77
- Succi, S., The lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford University Press, Oxford, UK, 2001
- Pan, C., Luo, L.-S., Miller, C T., An evaluation of lattice Boltzmann schemes for porous medium flow simulation, Computers & Fluids, 35 (2006) pp. 898-909
- Qian, Y. H., d'Humiéres, D., Lallemand, P., Lattice-BGK models for Navier-Stokes equation, Europhys. Lett., 17 (1992) pp. 479-484
- He, X., Luo, L. S., Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation, Phys. Rev. E, 56 (1997) pp. 6811-6817
- Chen, F., Xu, A., Zhang, G., Li, Y., Multiple-relaxation-time lattice Boltzmann model for compressible fluids, Physics Letters A, 375 (2011) pp. 2129-2139
- Lallemand, P., Luo, L.-S., Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability, Phys. Rev. E, 61 (2000) pp. 6546-6562
- Jeong, N., Choi, D. H., Lin, C.-L., Estimation of thermal and mass diffusivity in a porous medium of complex structure using a lattice Boltzmann method, International Journal of Heat and Mass Transfer, 51 (2008) pp. 3913-3923
- Koponen, A., Kandhai, D., Hellne, E., Alava, M., Hoekstra, A., Kataja, M., Niskanen, K., Sloot, P., Timonen, J., Permeability of three dimensional random fiber web, Physics Review Letters, 80 (1998) pp. 716-719
- Manwart, C., Aaltosalmi, U., Koponen, A., Hilfer, R., Timonen, J., Lattice-Boltzmann and finitedifference simulations for the permeability for three-dimensional porous media, Phys. Rev. E, 66 (2002) pp. 016702
- Wu, H.R., He, Y.L., Tang, G.H., Tao, W.Q., Lattice Boltzmann simulation of flow in porous media on non-uniform grids, Progress in Computational Fluid Dynamics, 5 (2005) pp. 97-103
- Jeong, N., Choi, D. H., Lin, C.-L., Prediction of Darcy-Forchheimer drag for micro-porous structures of complex geometry using the lattice Boltzmann method, J. Micromech. Microeng., 16 (2006) pp. 2240
- Mendoza, M., Wittel, F.K., Herrmann, H. J., Simulation of flow of mixtures through anisotropic porous media using a Lattice Boltzmann Model. European Physical Journal E, 32 (2010) pp. 339-348
- Qian, Y., d'Humieres, D., Lallemand, P., Recovery of Navier-Stokes equations using a lattice-gas Boltzmann method, Europhysics Letters, 17 (1992) pp. 479-484
- Dunweg, B., Schiller, U. D., Ladd, A. J. C., Statistical mechanics of the fluctuating lattice Boltzmann equation, Phys. Rev. E, 76 (2007) pp. 036704
- Chopard, B., Droz, M., Cellular automata modelling of physical systems, Cambridge University Press, Cambridge, UK, 1998
- Kim, J., Lee, J., Lee, K. O., Nonlinear correction to Darcy's law for a flow through periodic arrays of elliptic cylinders, Physica A, 293 (2001) pp. 13-20
- Serrenho, A., Miguel, A. F., Simulation and characterization of high porosity media for aerosol particle processing, Journal of Porous Media, 12 (2009) pp. 1129-1138
- Miguel, A. F., van de Braak, N. J., Silva, A. M., Bot, G. P. A., Wind-induced airflow through permeable materials: part I, Journal of Wind Eng. and Ind. Aerodynamics, 89 (2001) pp. 45-57
- Serrenho, A., Miguel, A. F., Fluid flow and solid/fluid suspensions flow in 3-D packed beds of spheres: the effect of periodicity of fixed beds, Defect and Diffusion Forum 315 (2011) pp. 871- 876
- Carman, P. C., Flow of Gases through Porous Media, Butterworths, London, UK, 1956
- Pinela, J., Kruz, S., Miguel, A. F., Reis, A. H., Aydin, M., Permeability-porosity relationship assessment by 2D numerical simulations. Proc. 16th International Symposium on Transport Phenomena, Prague, Czech Republic, 2005.
- Miguel, A. F., Airflow through porous screens: from theory to practical considerations, Energy and Buildings, 28 (1998) pp. 63-69
- Ergun, S., Fluid flow through packed columns, Chem. Engng. Prog., 48 (1952) pp. 89-94