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In this paper lattice-Boltzmann equation method is used to simulate non-Darcy 
flow in porous media. 2-D in-line and staggered arrangements of uniform cylin-
ders have been considered. The results of a comprehensive computational 
evaluation are reported: the range of validity of Darcy-Forchheimer equation is 
investigated and correlations for macroscopic transport properties are presented 
(i. e., for the permeability and the inertial parameter). Our investigation covers 
both no-slip and the slip-flow regimes. 
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Introduction 

Since the 1970s, computational modelling of fluid flow through porous media has 

increased rapidly [1, 2]. Porous media are diverse and include different scales. The flows 

through macro and micro-scales are not the same. As flows approach microscopic scales, 

increasing deviations from the well-established continuum laws are reported [3, 4]. The 

Knudsen number, defined as the ratio of the molecular mean free path to the characteristic 

length of pores, allows establishing four regimes [5]: 0 < Kn  0.001 (no-slip), 0.001 < Kn  

 0.1 (slip), 0.1 < Kn  10 (transition), and Kn > 10 (free molecular, ballistic). Navier-Stokes 

equation is only adequate for no-slip regime and can be extended into the slip-flow regime 
provided the velocity slip and temperature jump boundary conditions [4, 6]. In this regard, the 

limit of validity of the continuum flow description is Kn  0.1. Discrete Boltzmann models 

are based on a kinetic representation of the fluid dynamics, and avoid the drawbacks 

associated to the conventional Navier-Stokes description. Lattice-Boltzmann equation method 

(LBM) is appropriate for complexes geometries and covers all these four regimes (i. e., is also 

valid for transition and free molecular regime) [7, 8]. Within the continuum regime, LBM has 

been shown to be equivalent to a finite difference approximation of the incompressible 

Navier-Stokes equation [8].  

LBM for modelling hydrodynamics has its origins from the lattice gas cellular 

automata and can be directly derived by discretizing the Boltzmann equation [7, 8]. A very 
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widely used lattice-Boltzmann model is the lattice-Bhatnagar-Gross-Krook (BGK) [9, 10]. 

Especially important in the high-Reynolds number simulations are also the multiple-

relaxation-time lattice-Boltzmann models that offer increased numerical stability [11, 12].  

Several studies demonstrate the potential of the lattice-Boltzmann algorithm for 

numerical simulation of fluid through porous media [13-18]. In this paper, a numerical model 

based on the LBM is presented for simulating flow in non-Darcy porous media. Among other 

outcomes, the permeability and the inertial parameter variations are examined for both non-

slip and slip flow regimes. 

Lattice-Boltzmann method 

In the LBM, the fluid is modelled by a single-particle distribution function and the 

evolution of this function is governed by a lattice Boltzmann equation. Consider fi(r, t) the 

particle density entering at position r and time t with a velocity vi point in direction ei (vi = 

= ei / ), where i labels the lattice directions,  is the lattice spacing, and  – the time 

increment. A simple and widely used lattice-Boltzmann model is governed by a collision 

operator of the lattice-Bhatnagar-Gross-Krook model, based on a single collision relaxation to 

the local equilibrium distribution [9, 10]. The evolution equation is: 
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Here  is the non-dimensional relaxation-time parameter, (0)

if  – the equilibrium 

distribution function, and [fi(r, t) – (0)
if (r, t)]/t is the collision operator very often represented 

by i. A solution to this equation is found by using the Chapman-Enskog expansion [19], 

which is much known in statistical mechanics for deriving macroscopic laws for relevant 

physical quantities when the Boltzmann equation is known [20]. Considering that lattice 

spacing and time increment (i. e.,  and ) are small compared to the characteristic length and 

time scales, eq. (1) can be expanded around r and t. Therefore: 
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The Chapman-Enskog method [19] allow us to obtain the following perturbation 

expansion: 

 (0) (1) 2 (2) ...i i i if f f f  (3) 

 
where J is a very small parameter [19]. To determine the terms of this expansion it is 

assumed that the macroscopic quantities  and u are described by the zero
th

 order terms [21]: 
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To obtain a solution for eq. (1) by the eq. (3), the lattice and the equilibrium 

distribution are required. Figure 1 shows the Cartesian lattice with 8 velocities vectors. The 

central point  represents a particle at rest. This 2-D model is known as D2Q9 (i. e., D2 
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denotes the 2-D of the lattice and Q9 the 9 links 

per lattice point). The equilibrium function is 

defined by [9, 10]: 
 

 
where vs is the propagation speed on the lattice (1 

lattice spacing/time step), and aw  – 4/9, 1/9, and 

1/36 for the rest particle, the particles moving to 

the nearest and next-nearest neighbour sites, 

respectively. 

Under the assumption of a low Mach number, 

this previous formulation allows us to recover the 

incompressible Navier-Stokes equations with the 

equivalent viscosity, , described by [8]: 

 2
s ( 0.5)c τ ηn  (6) 

 
where cs is the sound speed and  – the time increment. This equation requires that   > 0.5 

and cannot be greater than 2 in order to maintain numerical stability. A detailed description of 

the all methodology is provided by [9, 10, 19]. 

Correlating the parameter  with Knudsen number, Kn, is essential [9, 10]. As 

mentioned, the Knudsen number is defined as the ratio between the mean free path and the 

characteristic length of the pores, and regarding the degree of rarefaction there are the 

following regimes [5]: 0 < Kn  0.001 (no-slip), 0.001 < Kn  0.1 (slip), 0.1 < Kn  10  

(transition) and Kn > 10 (free molecular). This study is focused on no-slip and slip flow 

regimes (0 < Kn  0.1). For an ideal gas the mean free path, l, is related to the equivalent 

viscosity, , and the molecular velocity, umol, as [5]: 
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Here the viscosity is given by eq. (6). From the kinetic theory of gases, the mean 

molecular velocity can be obtained by: 
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and 
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where m represents the molecular mass, kB is the Boltzmann constant, and  – the density. 

Substituting eqs. (7) to (9) into the Knudsen number equation yields: 
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Figure 1. Discrete lattice velocities for the 
D2Q9 model 
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Here Kn is the local Knudsen number and  – the lattice number in the geometry.  

Since, the mean free path is inversely proportional to the pressure, the local Kn can be 

calculated by: 

 
o

oKn Kn
p

p
 (11) 

 
where p is the pressure and the subscript o means outlet. 

Geometry, boundary conditions and  

numerical method validation  

Our topological space is based on 

uniformly distributed cylinders in 2-D for in-

line and staggered arrangements (fig. 2). For 

the arrangements displayed in fig. 2, flow is 

blocked for porosities less than 0.2146 and 

0.0932, respectively. Therefore, in the 

simulations the porosity  is prescribed for 

higher values: 0.25    0.95 for in-line 

arrangements and 0.20    0.95 for 

staggered arrangements.  

Simulations are performed in the 

Reynolds number range of 0.004-400. A periodic boundary condition is imposed at respective 

boundaries, while a pressure difference is prescribed between the inlet and outlet. Details of 

the computational procedure can be obtained in [22].  

The numerical method proposed here was validated against the results presented by 

Serrenho and Miguel [23] for 2-D staggered arrangements (porosities 0.50 and 0.95). The 

deviation between our results and those presented by [23] was always less than 7%. 

Therefore, the numerical method is able to simulate adequately the considered flows. 

Non-Darcy flow in porous media:  friction factor vs.  

Reynolds number and Forchheimer number 

Non-Darcy flow in porous media occurs if the Reynolds number becomes large 

enough so that Darcy’s law, a  linear  relationship  between  fluid velocity and pressure drop 

(i. e., shear stress is proportional to the velocity gradient inside a pore), is no longer sufficient 

[24]. Macroscopically, a non-linear relation between the pressure drop and the flow velocity is 

observed, and the Darcy-Forchheimer equation can be applied [24]. This equation is often 

rearranged in a dimensionless form [23, 25]: 
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Figure 2. 2-D porous space with  

in-line (l. h. s.) and staggered  
(r. h. s.) arrangements 
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where fK represents the friction factor, ReK – the Reynolds number based on permeability,  – 

the a dimensionless inertia parameter,  – the inertial coefficient, u – the superficial fluid 

velocity, p – the pressure,  – the density, L – the thickness of the porous media, and K – the 

permeability which represents the ability of the material to transmit fluid through itself. 

The dimensionless form of the Darcy-Forchheimer equation can be also presented in 

terms of the Forchheimer number, FoK (defined as the product of the Reynolds number, ReK, 

by the dimensionless inertia parameter, ), and may be written as [23, 25]: 
 

 K

K

1
1

Fo
f λ  (14) 

 
Experimental and numerical data from a variety of porous media has been 

successfully correlated with these equations [2]. In this study, eqs (13) and (14) will be used 

to fit the results of our computational simulations. 

Results 

In the following we present and analyse the results of the flow simulations in the 

geometries depicted in fig. 2. We apply the dimensionless forms of Darcy-Forchheimer 

equation (i.e., eqs. 13 or 14) as phenomenological models to correlate the variations of the 

friction factor for different porosities and flow conditions.  

No-slip flow (0 < Kn ≤ 0.001): permeability and inertial parameter 

Based on the velocity and pressure results of the simulations, the permeability and 

the inertia parameter was estimated and then the friction factor, the Reynolds number and the 

Forchheimer number calculated. The friction factor is then plotted in terms of ReK or FoK. 

Figures 3 and 4 show the results of simulations performed with in-line and staggered porous 

structures for a porosity of 0.3 and 0.6, respectively.  

 

 
Figure 3. Logarithmic plot showing the dependence 

of the friction factor fK on the Reynolds number 

 
Figure 4. Logarithmic plot showing the 

dependence of the friction factor fK on the 
Forchheimer number 

 

In agreement with a large number of experimental and computational studies [1, 2], 

we also observe a transition from linear (Darcy or creeping flow regime) to non-linear 

(Forchheimer) regime. Figures 3 and 4 show that this transition occurs at ReK in the range of 
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0.2-0.4 or FoK in the range of 0.3-0.7, respectively. In both plots the transition from linear to 

non-linear behaviour is gradual and takes place already under laminar flow regime. This 

means that the inertia effects (Forchheimer regime) flatten the fK curve in a manner 

reminiscent of the friction factor in turbulent flow over a surface. 

Figure 3 also reveals that the effect of 

geometry (i. e., in-line and staggered arrange-

ments) is only significant outside the linear 

(Darcy's regime) flow. This means that, for a 

uniform distribution of cylinders in a 2-D porous 

structure, the arrangement does not affect the 

intrinsic permeability (fig. 5). The results of 

computational simulations depicted in fig. 5 also 

corroborate numerous studies available in the 

literature which display a strong dependence of 

the permeability on the porosity [13-17]. 

In fig. 6 we compare the dimensionless 

permeability generated by the computational 

simulations with the permeability obtained from 

the correlations developed by Koponen et al. 
[14], Kozeny et al. [26] and Pinela et al. [27]. 

This plot shows that the Kozeny-Carman correla-

tion is consistent with our data only when the 

porosity is less than 0.55 (i. e., for larger 

porosities this correlation overestimates our data). 

On the other hand, the result obtained from the 

simulations is significantly different from the 

values estimated with the correlations presented 

by Koponen et al. [14] and Pinela et al. [27] for 

low porosities but is in good agreement when the 

porosity is larger than 0.8 and 0.65, respectively. 

All three correlations present very poor estima-

tion ability for porosities between 0.55 and 0.7.  

The result depicted in fig. 5 shows that our data approximately coalesces into one 

exponential curve in the entire porosity domain. Therefore, the points can be fitted with the 

following equation: 

 2

2
0.0003exp(9.0956 ) ( 0.976) 0.25 0.95

K
φ r

d
f  (15) 

 
Figure 7 illustrates the dependence of the dimensionless inertia parameter  on both 

the porosity and solid matrix arrangement. In contrast to the permeability results (fig. 5),  is 

higher in the staggered arrangement than in in-line arrangement. Besides, the inertia 

parameter decreases with the void fraction (porosity). This result corroborates numerous data 

available in the literature (see for example [1, 2]) which display a strong dependence of 

porosity.  

The inertia parameter  obtained in these simulations is compared to the correlations 

suggested by [28, 29] in fig. 8. The plot shows that the Ergun’s correlation agrees only for the 

in-line porous arrangement with porosity less than 0.8. It is also observed that the correlation 

 

Figure 5. Logarithmic plot showing the 
dependence of the dimensionless 
permeability (K/d2) on the porosity 

 

 
Figure 6. Comparison of K/d2 obtained 
from the computational simulations with 

correlations available in the literature 
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presented by Miguel [28] is found to agree only with the staggered porous arrangement for 

porosities between 0.3 and 0.6. It is noteworthy that both correlations produce very poor 

estimation of   for a porosity larger than 0.6, independently of the arrangement. 

 

 
Figure 7. Logarithmic plot showing the 
dependence of the dimensionless inertial 

parameter  on the porosity 
 

 
Figure 8. Comparison of  obtained from the 
computational simulations with correlations 

available in the literature 
 

According to fig. 7, the permeability generated by the computational simulations can 

be fitted with the following equation: 
 

 

0.867
φ

1
λλ c

φ
 (16) 

with 

       c  = 1.42   (r
2 
= 0.977)    0.20    0.95       for a staggered arrangement (17) 

 
    c  = 1.62   (r

2
 = 0.978)    0.25    0.95       for an in-line arrangement (18) 

 
This result shows that the coefficient c  for a staggered arrangement is 12% higher 

than for an in-line arrangement.  

Slip flow (0.001< Kn  0.1): permeability vs. Knudsen number 

Figure 9 is a summary of the results obtained for the dimensionless permeability in 

the slip-flow regime. This plot shows that the K/d
2
 depends not only on the porosity but also 

both on the Knudsen number and the arrangement of the solid matrix. Although the porosity 

dependence is similar for both no-slip and slip-flow regimes (i. e., the permeability increases 

with the porosity), the effects of Knudsen number and solid matrix arrangement are different. 

For a no-slip flow regime, K/d
2
 is not dependent of both Kn and matrix arrangement. On the 

other hand, for a slip-flow regime, dimensionless permeability is higher for the in-line 

arrangement than for the staggered arrangement of the solid matrix. Besides, the 

dimensionless  permeability,  K/d
2
,  follows a power-law increase with the Knudson number 

(i. e., K/d
2 
~ Kno

0.45
 and K/d

2 
~ Kno

0.23
 for porosities of 0.3 and 0.5, respectively). 

Notice that both K/d
2
 and the Knudsen number (eq. 10) depicted in fig. 9 are 

dependent on the characteristic dimension, d, of the solid matrix. Therefore, to obtain a 

further insight into the dependence of intrinsic permeability on the Knudsen number, the ratio 

of the intrinsic permeability to the distance of the mean-free path, K/l
2
, vs. the Knudsen 

number is depicted in fig. 10. If l = constant, this dimensionless permeability follows a power-
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law decrease with the Knudson number (i. e., K/l
2 

~ Kno
–1.6

 and K/l
2 

~ Kno
–1.8

 for porosities of 

0.3 and 0.5, respectively). This tendency agrees with the results reported by Miguel et al. [5]. 

Conclusions 

The LBM with the D2Q9 model was applied to solve non-Darcy flow through 2-D 

porous media. Staggered and in-line arrangements of uniform cylinders were considered. Our 

simulation results were presented in terms of a friction factor and are compared to 

dimensionless Darcy-Forchheimer equation, a widely used model for porous media. Results 

show that Darcy-Forchheimer equation is successfully correlated with the data of our 

simulations. Besides, the permeability and the inertial parameter are obtained from the best fit 

of these data.  New insights and correlations for the relationship between these parameters and 

the porosity are presented. 

Simulations are also carried out for both no-slip and slip-flow regime. The effect of 

the staggered and in-line arrangements on the permeability is studied. The relationship 

between the intrinsic permeability and the Knudsen number is studied. For non-slip flow 

conditions the permeability doesn’t depend on the Knudsen number. On the other hand, the 

permeability follows a power-law variation with the Knudson number for slip-flow regime. 

In summary, the present study reveals many interesting features of flow through 

porous structures and demonstrates the capability of the LBM to capture these features both in 

no-slip and slip flow regime.  

Acknowledgments 

Thanks are due to Dr. Z. Lee for his collaborative support on LBM simulations. 

Nomenclature 

cs –  sound speed, [ms–1] 
d –  characteristic length of the flow  
 –  geometry, [m] 
FoK  –  Forchheimer number, [–] 
fK –  friction factor, [–] 

 

(0)
if  –  equilibrium distribution function, [–] 

K –  permeability, [m2] 
Kn –  Knudsen number, [–] 
kB –  Boltzmann constant, [JK–1] 
L –  thickness of the porous media, [–]  

 
Figure 9. Logarithmic plot showing the 

dependence of the dimensionless permeability 
(K/d2) on the Knudsen number 

 
Figure 10. Logarithmic plot showing the 
dependence of the ratio of intrinsic permeability 

to distance of the mean-free path (K/l2) on the 
Knudsen number 
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l –  mean free path, [m] 
m –  molecular mass, [kg] 
p –  pressure, [Pa] 
ReK –  Reynolds number based on permeability, [–] 
r –  position, [m]  
T –  temperature, [K] 
t –  time, [s] 
u –  velocity, [ms–1] 
umol –  molecular velocity, [ms–1] 
vi –  velocity point in direction ei, [ms–1]  

Greek symbols 

 –  inertial coefficient, [m2s–1] 

 –  dimensionless inertia parameter, [–]  
 –  equivalent viscosity 
 –  fluid density, [kg m-3] 
 –  dimensional relaxation time, [–]  
f –  porosity 

 –  lattice number in the geometry, [–] 

i –  collision operator, [–] 

Subscripts 

i –  labels the lattice directions 
o –  outlet 
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