THERMAL SCIENCE
International Scientific Journal
OPTIMAL TEMPERATURES AND MAXIMUM POWER OUTPUT OF A COMPLEX SYSTEM WITH LINEAR PHENOMENOLOGICAL HEAT TRANSFER LAW
ABSTRACT
A complex system including several heat reservoirs, finite thermal capacity subsystems with different temperatures and a transformer (heat engine or refrigerator) with linear phenomenological heat transfer law [q ∞ Δ(T -1)] is studied by using finite time thermodynamics. The optimal temperatures of the subsystems and the transformer and the maximum power output (or the minimum power needed) of the system are obtained.
KEYWORDS
PAPER SUBMITTED: 2008-11-09
PAPER REVISED: 2009-04-14
PAPER ACCEPTED: 2009-04-30
THERMAL SCIENCE YEAR
2009, VOLUME
13, ISSUE
Issue 4, PAGES [33 - 40]
- Curzon, F. L., Ahlborn, B., Efficiency of a Carnot Engine at Maximum Power Output, Am. J. Phys., 43 (1975), 1, pp. 22-24
- Andresen, B., Finite Time Thermodynamics, Physics Laboratory II, University of Copenhagen, Copenhagen,1983
- Andresen, B., et al., Thermodynamics for Processes in Finite Time, Acc. Chem. Res. 17 (1984), 8, pp. 266-271
- Sieniutycz, P., Salamon, P., Advances in Thermodynamics, Vol. 4: Finite Time Thermodynamics and Thermoeconomics, Taylor & Francis, New York, USA, 1990
- Radcenco, V., Generalized Thermodynamics, Editura Techica, Bucharest, Romania, 1994
- Sieniutycz, S., Shiner, J. S., Thermodynamics of Irreversible Processes and Its Relation to Chemical Engineering: Second Law Analyses and Finite Time Thermodynamics, J. Non-Equilib. Thermodyn., 19 (1994), 4, pp.303-348
- Feidt, M., Thermodinamic and Energy Optimization of the Systems and Processes (2nd ed.) (in French), Technique et Documentation, Lavoisier, Paris, 1996
- Bejan, A., Entropy Generation Minimization: The New Thermodynamics of Finite-Size Devices and Finite Time Processes, J. Appl. Phys., 79 (1996), 3, pp. 1191-1218
- Chen, L., Wu, C., Sun, F., Finite Time Thermodynamic Optimization or Entropy Generation Minimization of Energy Systems, J. Non-Equilib. Thermodyn., 24 (1999), 4, pp. 327-359
- Berry, R. S., et al., Thermodynamic Optimization of Finite Time Processes, John Wiley and Sons Ltd., Chichester, UK, 1999
- Radcenco, V., Vasilescu, E. E, Feidt, M., Thermodynamic Optimization of Direct Cycles, Termotehnica (2003), 1-2, pp. 26-31
- Sieniutycz, S., Thermodynamic Limits on Production or Consumption of Mechanical Energy in Practical and Industry Systems, Progress Energy & Combustion Science, 29 (2003), 3, pp. 193-246
- Chen, L., Sun, F., Advances in Finite Time Thermodynamics: Analysis and Optimization, Nova Science Publishers, New York , USA, 2004
- Sieniutycz, S. , Farkas, H., Variational and Extremum Principles in Macroscopic Systems, Elsevier Science Publishers, London, UK, 2005
- Chen, L., Finite-Time Thermodynamic Analysis of Irreversible Processes and Cycles (in Chinese), Higher Education Press, Beijing, 2005
- Radcenco, V., et al., New Approach to Thermal Power Plants Operation Regimes Maximum Power versus Maximum Efficiency, Int. J. Thermal Sciences, 46 (2007), 12, pp. 1259-1266
- Amelkin, S. A., et al., Maximum Power Process for Multi-Source Endoreversible Heat Engines, J. Phys. D: Appl. Phys., 37 (2004), 9, pp. 1400-1404
- Amelkin, S. A., et al., Thermo-Mechanical Systems with Several Heat Reservoirs: Maximum Power Processes, J. Non-Equlib. Thermodyn., 30 (2005), 1, pp. 67-80
- Tsirlin, A. M., Mironova, V. A., Amelkin, S. A., Finite-Time Thermodynamics: Conditions of Minimal Dissipation for Thermodynamic Process with Given Rate, Phys. Rev. E, 58 (1998), 1, pp. 215-223
- Tsirlin, A. M., Kazakov, V. A., Maximal Work Problem in Finite-Time Thermodynamics, Phys. Rev. E, 62 (2000), 1, pp.307-316
- Tsirlin, A. M., Kazakov, V. A., Kolinko, N. A., Irreversibility and Limiting Possibilities of Macrocontrolled Systems: I. Thermodynamics; II. Microeconomics, Open Sys. Inf. Dyn., 8 (2001), 4, pp. 315-347
- Tsirlin, A. M., Kazakov, V. A., Optimal Processes in Irreversible Thermodynamics and Microeconomics, Int. Description of Complex Systems, 21 (2004), 1, pp. 29-42
- Tsirlin, A. M., Kazakov, V. A., Trushkov, V. V., Controllable Open Macrosystems in Thermodynamics and Microecnomics, Open Sys. Inf. Dyn., 12 (2005), 4, pp. 347-363
- Huleihil, M., Andresen, B., Optimal Piston Trajectories for Adiabatic Processes in the Presence of Friction, J. Appl. Phys., 100 (2006), 11, pp. 114914(1-6)
- Tsirlin, A. M., et al., Thermodynamic Constraints on Temperature Distribution in a Stationary System with Heat Engine or Refrigerator, J. Phys. D: Appl. Phys., 39 (2006), 19, pp. 4269-4277
- De Vos, A., Efficiency of Some Heat Engines at Maximum Power Conditions, Am. J. Phys., 53 (1985), 6, pp. 570-573
- Chen, L., Yan, Z., The Effect of Heat Transfer Law on the Performance of a Two-Heat-Source Endoreversible Cycle, J. Chem. Phys., 90 (1989), 7, pp. 3740-3743
- Chen, L., Sun, F., Wu, C., Influence of Heat Transfer Law on the Performance of a Carnot Engine, Appl. Thermal Engng., 17 (1997), 3, pp. 277-282
- Chen, L., et al., Optimal Configuration and Performance of Heat Engines with Heat Leak and Finite Heat Capacity, Open Sys. Inf. Dyn., 9 (2002), 1, pp. 85-96
- Chen, L., et al., Optimal Configurations and Performance for a Generalized Carnot Cycle Assuming the Heat Transfer Law, Appl. Energy, 78 (2004), 3, pp. 305-313
- Sieniutycz, S., Kuran, P., Modeling Thermal Behavior and Work Flux in Finite-Rate Systems with Radiation, Int. J. Heat Mass Transfer, 49 (2006), 17-18, pp. 3264-3283
- Kuran, P., Nonlinear Models of Production of Mechanical Energy in Non-Ideal Generators Driven by Thermal or Solar Energy(in Polish), Ph. D. thesis, Warsaw University of Technology, Warsaw, 2006