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A complex system including several heat reservoirs, finite thermal capacity subsys-
tems with different temperatures and a transformer (heat engine or refrigerator)
with linear phenomenological heat transfer law [q oc A(T )] is studied by using fi-
nite time thermodynamics. The optimal temperatures of the subsystems and the
transformer and the maximum power output (or the minimum power needed) of the
system are obtained.
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Introduction

Since finite time thermodynamics and entropy generation minimization has been ad-
vanced, much work has been carried out on the performance analysis and optimization of finite
time processes or finite size devices [1-16]. Amelkin et al. [17, 18] discussed the maximum
power processes of multi-heat-reservoir heat engine with stationary temperature reservoirs,
found that some reservoirs were not used in heat transfer in order to achieve an optimal perfor-
mance of the system, and further found that independent of the number of reservoirs the working
fluid used only two isotherms and two adiabatics. Tsirlin ef al. [19] analyzed the thermodynamic
process with given rate and obtained the general conditions that the minimal dissipation should
obey. Tsirlin et al. [20-23] investigated the optimal process and optimal performance of the
open controllable macrosystems and applied the method to microeconomic systems, obtained
many important results. Huleihil ef al. [24] studied the optimal piston trajectories for adiabatic
processes in the presence of friction. Tsirlin et al. [25] further studied the optimal temperature
and maximum power out of a complex system, which includes a transformer, several heat reser-
voirs and finite capacity subsystems with different temperatures, under Newtonian heat transfer
law.

In general, heat transfer is not necessarily Newtonian and also obeys other laws, and
heat transfer laws have the significant influences on the performance of thermodynamic cycles
[26-34]. In this paper, based on ref. [25], the optimal temperatures and maximum power output
of the complex system are obtained by using another linear heat transfer law, i. e. linear
phenomenological heat transfer law [q oc A(71)], in the heat transfer processes inside of the sys-
tem. The linear phenomenological heat transfer law is used in irreversible thermodynamics, the
heat conductivities in this case are the so-called kinetic coefficients by Callen [35].



34 Chen, L., Li, J., Sun, F.: Optimal Temperatures and Maximum Power Output of a ...

System model

The stationary state of a thermodynamic system is shown in fig 1.

The system includes heat reservoirs with constant temperatures, finite capacity subsys-
tems (reservoir with constant temperature, finite capacity subsystem with a temperature that de-
pends on its extensive variables, the heat/mechanical energy transformer) with different temper-
atures and a transformer. We assume the quantity of all reservoirs and finite-capacity
subsystems is 7 and the quantity of the subsys-
tems is m. We divide m finite-capacity sub-
systems into two categories — the subsystems
with fixed and free temperatures, the quantity
of the subsystems with free temperatures is 7.
The transformer generates power and if the
maximum power is negative then it corre-
sponds to the minimum of the external power
consumed by the system. Assuming each sub-
system is in internal equilibrium and all irre-
versibility arises at the boundaries of subsys-
tems. There are heat transfers between sub-
systems each other and heat reservoirs. Denote
the subsystem's (or heat reservoir's ) tempera-
ture as T, the heat flow from the i to the ;"

U

Uy

-l ™ Tianstormer (% N subsystems as q(T;, T)), the temperature of
i Pt Uy Uy Ul »17,  working fluid of the transformer when it con-
tacts the i subsystem (or heat reservoir) as u;,

P the heat transfer between the i subsystem (or

heat reservoir) and the transformer as g7, u,),
and the power output of the transformer as P.

The objective is to find the optimal tempera-
tures u; ., for contact between the transformer and each of the subsystems and the heat reservoirs
such that the power P is maximal.

Defining the heat flow entering each subsystem is positive. When 7; increase, g;; de-
crease monotonically, and when T} increase, g,; increase monotonically. If 7; = T then g;; = 0. If
there is no contact between subsystems then g;; = 0. Assuming the functions g,(7;, 7)) are contin-
uously differentiable and the transformer is endoreversible and the entropy generation in it is
equal to zero. If the heat transfers between subsystems, heat reservoirs and the transformer obey
linear phenomenological heat transfer law, then:

qi :ai(ufl _Tfl)s q; =a; (T,il _Tfl) (1)

Figure 1. Complex thermodynamic system model

where o; and o; are the heat conductivities. The maximal power problem takes the form:

P=3o,(u! ~T)—max, )
i=1 !

From the entropy balance of the working fluid of the transformer, one can obtain

n ai(“,-_l _Ti_l) B

2

i=1 ui

0 (3)

From the energy balance of the subsystem, one can obtain:
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n
Yo (T —ijl)zozl.(ulf1 -, i=1..m 4)
j=l
The m finite capacity subsystems can be divided into two categories; one is the subsys-
tems with free temperatures 7;(i =1, ..., ), which can be controlled jointly with u, to maximize
P, and another is the subsystems with fixed temperatures (i =7 + 1, ..., m).

Optimal solutions

Defining the Lagrange function:

. (u—l— T g el =T
L= =T~ /32 lpy ot Z0)
i=1 i=m+l 1
+zli[2aij(Ti‘1 —Tj‘ )—oci(ui‘1 -T71)] (5)
=1 j=1
where 8 and A, are Lagrange multipliers. From 0L/0u, = 0 and 0L/0T; = 0, one can obtain:
2B8T,
oL R N zopt:—ﬂ i , i=l...,n (6)
ou, B+T,1-4))
ﬁ:o:a{ —E—Ai]— (A, ~A)a; =0, i=l..r (7)
i u; j=l
A,;= 0 when j > m. The stationary condition for Lagrange function for heat reservoirs yields:
220314,-01[”:%, i=m+1,...,n ®)
Ou; B+T,
The stationary condition for Lagrange function for subsystems yields:
28T,
oL =0=> lopt:L, i=L...,m )
ou; B+T,(1-4;)

Systems consisting of reservoirs and transformer

If the system consists of n reservoirs (m = 0) and the transformer, one can obtain from
egs. (3) and (8):

, i=L..,n (10)

, dj=l..,n (11)

If the system only has two heat reservoirs (n =2), egs. (10) and (11) become the results
in ref. [27].
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Systems consisting of subsystems, reservoirs, and transformer

Consider a system where the temperatures of all subsystems are free (» = m). The max-
imal power output problem can be decomposed into three sub-problems.
(1) To maximize the power P}(o,) derived from the contact between the transformer and
reservoirs for the given entropy flow from the reservoirs to the transformer o,. That is, under
the constraints:

n

Y Lig, (12)
to maximize the eq. (13): i=m+1 U;
P (o) = %4, (13)

Solving egs. (1), (8), and (12), one can obtain the optimal temperatures of the reser-

2Ti\/, iai/(. f(xiTl_fz +4o, )
_ i=m+1 i=m+1 , i=m+ 1, ) (14)

\/ iai/( fainz + 4o, )+Ti
i=m+1 =+l
Then the maximal power generated from contacts with reservoirs is:

n X iai
NCAED I i

i=m+1 2 2z
> a;T:*+40, |-T1
J=m+1 7 !

(2) To maximize the power P; (o) generated from contact between the transformer and finite
capacity subsystems subject to the given flow of entropy from the subsystems to the
transformer, working fluid o, . That is, under the constraints:

VOIrs:

ui opt

Lj=m+l,..,n (15)

$ 4o, (16)
i=1 ui
and eq. (4), to maximize eq. (17):
Ps*(as)zgqi (17)

From eq. (1), the subsystems, temperatures ; can be expressed in terms of ¢; and T;:

1 q;, 1
=14 18
u a;, T, (18)

i i i

Equation (4) can be rewritten as the set of linear equations with respect to the temperatures
T;(i=1,..,m):

n i wo &y
Ya, - y—=q;+ ¥ —, i=lL..,m (19)

or in matrix form:

Aa) T = C(q) (20)
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where
apy —a Ay Oim
Oy Qy —a, Com — n
A((Z)Z— > ai = Zlall
aml amZ amm _am
-1
T 9 +R,
-1
q, +R2 n OCU
T= 2 > C(Q) . > Ri - Z P
. N Jj=m+1 T/-
-1
Tm qu +R7ﬂ

Assuming the matrix A is reversible and the temperatures, reciprocal of the systems can be
expressed in terms of the heat flows ¢; and the fixed reservoir temperatures
T=A"C(qg) 21
1

——=by(q, +R)) +by(q, +Ry) +---+ b, (q,, +R,,) (22)

Ti(q)
where b;(a) are the components of its inverse matrix A!. Substituting eq. (22) into eq. (18),
one can obtain the u;(q;) with respect to ¢,. Equation (16) can be expressed as:

Zq{T;‘ +Z—"]=as 23)
i=1 j

l

The Lagrange function for the problem (17) is:

L=iqi(1_}‘sTil _lsqij-’-ﬂ“so-s (24)
i=1 a;
Its stationary condition on g; is:
m 2A.q ;
O g $ga, 1+l o o1 m 25)
0q ; i=1 ' T, a;

Solving the set of m + 1 equations — egs. (23) and ‘(25), gives the optimal ¢} (o) and A,.
Substituting the results into egs. (17), (18), and (22), one can obtain the optimal 7, (o),
U; opt(Gs)a and Ps* (O-s )
(3) To find the overall maximum power subject to the entropy balance for the working fluid of
the transformer. That is, under the condition:
o,to,=0 (26)
to maximize the eq. (27)
P(q[):P:(Gr)-'_Ps*(Gs) (27)

The Lagrange function of the problem (27) is
L=P{(c,) +P(0,) + (o, +0,) (28)
Its stationary condition on o, and o, yields

OP, _ oP; (29)
oo oo

S T
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From eq. (26), one can obtain the power P(g;) is maximal when:

o, =0, (30)

Numerical example

Consider a complex system which consists of two heat reservoirs, two finite capacity
subsystems and a transformer. The structure of the system is shown in fig 2. The matrix of heat
conductivities has the form

0 2-107 4-107 0
_|2-107 0 0 2-107
4-107 0 0 0
0 2-107 0 0
where i, j = 1, 2 correspond to the interaction between
+ subsystems and i > 2 orj > 2 to the interaction between
T, 4 . o
the subsystems and the reservoirs. The heat conductivi-
ties for transformer-subsystems and transformer-reser-
voirs interaction are o, = 10’ WK, ot =2-10" WK, ot =
=4-10" WK, a,=0.9-10" WK, and the reservoir tem-
m p peratures are 73 = 1000 K and 7}, = 300 K.
|, Transformer *<—% First, one can obtain u;(c,), u,(c,), and P (o, ) with

4 . . .
l respect to o, by substituting the parameters above into
P

o i }

egs. (14) and (15) and obtain ¢,(o,), ¢,(c,), and P," (o)
with respect to o, by using eqgs. (22), (23), and (25).
Then, one can obtain the values of o, and o by using
Figure 2. Two reservoir thermodynamic ~ €95- (29) and (30). Finally, sul:?stituting o, and o into
system equations above, one can obtain the optimal tempera-
tures of the subsystems and the transformer.

The calculation yields the following optimal temperatures for the subsystems and
transformer: 7} = 682.98 K, 7, =434.37 K, u; ,,,, = 608.69 K, u, ., =474.07 K, u; ,,, = 711.36 K,
and u, ,, = 388.74 K. The maximum power output is P* = 7321.60 W.

Conclusions

This paper gives a method to calculate the optimal temperature and maximum power
output of complex system which consists of several heat reservoirs, finite thermal capacity sub-
systems with different temperatures, and a transformer, and obtains the analytical expressions of
the temperatures and the power based on ref. [25]. The heat transfer is assumed to be linear
phenomenological heat transfer law. In general, the results obtained in this paper are different
from those obtained in ref. [25]. The method presents herein provide a means for improving
evaluation of the temperature distribution and the mechanical energy limits in practical complex
system.
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Nomenclature Greek letters
) a — heat conductivity, [WK]

A — matrix ) ) a  — sum of heat conductivities, [WK]

b - components of inverse matrix B — Lagrange multiplier, [-]

C — matrix 2 L ltinlier. [

. angrange multiplier, [-]

L — Lagrange function 0

m — quantity of subsystems, [—] ° — entropy flow, [WK™]

n — quantity of all reservoirs and sybsystems, [—] Subscripts and superscripts

P — power output, [W] ) @

q — heat flow, [W] ! ol

R — sum of heat flows, [W] J -/

r — quantity of subsystems with free * - mt%leal

temperatures, [—] m - m )

T — matrix r — reservoir

T — temperature of reservoirs or subsystems, [K] s - sub§ystem

u — temperature of working fluid of the opt — optimal

transformer, [K]
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