THERMAL SCIENCE

International Scientific Journal

THERMAL MODELING OF MULTI-SHAPE HEATING SOURCES ON N-LAYER ELECTRONIC BOARD

ABSTRACT
The present work completes the toolbox of analytical solutions that deal with resolving steady-state temperatures of a multi-layered structure heated by one or many heat sources. The problematic of heating sources having non-rectangular shapes is addressed to enlarge the capability of analytical approaches. Moreover, various heating sources could be located on the external surfaces of the sandwiched layers as well as embedded at interface of its constitutive layers. To demonstrate its relevance, the updated analytical solution has been compared with numerical simulations on the case of a multi-layered electronic board submitted to a set of heating source configurations. The comparison shows a high agreement between analytical and numerical calculations to predict the centroid and average temperatures. The promoted analytical approach establishes a kit of practical expressions, easy to implement, which would be cumulated, using superposition principle, to help electronic designers to early detect component or board temperatures beyond manufacturer limit. The ability to eliminate bad concept candidates with a minimum of set-up, relevant assumptions and low computation time can be easily achieved.
KEYWORDS
PAPER SUBMITTED: 2016-04-16
PAPER REVISED: 2016-05-24
PAPER ACCEPTED: 2016-06-15
PUBLISHED ONLINE: 2016-12-03
DOI REFERENCE: https://doi.org/10.2298/TSCI160416300M
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2017, VOLUME 21, ISSUE 2, PAGES [797 - 811]
REFERENCES
  1. John N. Funk, M. Pinar Menguc, Kaveh A. Tagavi, Clifford J, Cremers, A Semi-Analytical Method to predict Printed Circuit Board Package Temperatures, IEEE Transactions on Components, Hybrids and Manufacturing Technology, 1992, Vol. 15, No. 5.
  2. Gordon N. Ellison, Extensions of the Closed Form Method for Substrate Thermal Analysers to Include Thermal Resistances from Source-to-Substrate and Source-to-Ambient, IEEE Transactions on Components, Hybrids and Manufacturing technology, 1992, Vol. 15, No. 5.
  3. David H. Chien, Chen Y. Wang and Chin C. Lee, Temperature Solution of Five-Layer Structure with a Circular Embedded Source and its Application, IEEE Transactions on Components, Hybrids and Manufacturing Technology, 1992, Vol. 15, No. 5, 707-714.
  4. Niccolo Rinaldi, Generalized Image Method with Application to the thermal modelling of Power Devices and circuits, IEEE Transactions on Electron Devices, 2002, Vol. 49, No.4.
  5. John Albers, An Exact recursion Relation Solution for the Steady-State Surface temperature of a General Multilayer structure, IEEE Transactions on Components, packaging and Manufacturing Technology, 1995, Vol. 18.No. 1.
  6. Kevin R. Bagnall, Omair Saadat, Tomas Palacios, Evelyn N. Wang, Analytical Thermal Model for HEMTS with complex Epitaxial Structures, 2014, The Intersociety Conference on Thermal and Thermo mechanical Phenomena in Electronic Systems (ITHERM).
  7. J.R Culham, M. M. Yovanovich, T. F. Lemczyk, Thermal Characterization of Electronic Package using A Three-Dimensional Fourier Series Solution, Journal of Electronic Packaging, 2000, Vol. 133, pp 233-239 .
  8. John Ditri, Heat Conduction in Microwave Devices With orthotropic and Temperature-dependent Thermal Conductivity, IEEE Transactions on Microvawe Theory and Techniques, 2007, Vol.55, No. 3.
  9. S. Vintrou, N. Laraqi, A. Bairi, Calculation and analysis of thermal impedance of microelectronic structures from analytical models, Solid-State Electronics, volume 67, issue 1, pp. 45-52, January 2012
  10. Ehsan Sadeghi, Majid Bahrami, Ned Djilali, Thermal Spreading of Arbitrary-Shape Heat Source on a Half-Space: a Unified Approach, IEEE Transactions on Components and Packaging Technologies, 2010, Vol. 33, No.2.
  11. J. Hristov, An Alternative Integral-Balance Solution to Transient Diffusion of Heat (Mass) by time-Fractional Semi-derivatives and Semi-integrals: Fixed boundary conditions, Thermal Science,2016, in press , DOI: 10.2298/TSCI150917010H.
  12. A. Fabre, J. Hristov, On the integral-balance approach to the transient heat conduction with linearly temperature-dependent thermal diffusivity, Heat Mass Transfer, (2016), in press, DOI:10.1007/s0023-016-1806-5
  13. Gaël Maranzana , Isabelle Perry, Denis Maillet, Quasi-Analytical Simulation of Conduction Heat Transfer through a Pyramidal Multilayer multiblock by the Quadrupole Method, Numerical Heat Transfer, Part B, Vol 42, pp 499-521, 2002
  14. J. Pailhes, C. Pradere, J. L. Battaglia, J. Toutain, A. Kusiak, A. W. Aregba, J. C. Batsale, Thermal quadrupole method with internal heat sources, International Journal of Thermal Sciences - Vol. 53, p.49-55 - 2012
  15. E. Monier-Vinard, N. Laraqi, C. T. Dia, M. N. Nguyen, V. Bissuel, Analytical Thermal Modeling of Multi-Layered Active Embedded Chips into High Density Electronic Board, Thermal Science, Volume 17, issue 3, pp. 695-706, 2013.
  16. E. Monier-Vinard, N. Laraqi, C. T. Dia, M. N. Nguyen, V. Bissuel, Analytical modeling of multi-layered Printed Circuit Board dedicated to electronic component thermal characterization, Solid State Electronic Journal, 2015, Vol. 103, 30-39.
  17. N. Laraqi, Thermal Resistance for Random Contacts on the Surface of a Semi-Infinite Heat Flux Tube, Journal of Heat Transfer, 2003, Vol. 125.
  18. W Pabst, E Gregorova, The sigmoidal average - a powerful tool for predicting the thermal conductivity of composite ceramics, 6th European Thermal Sciences Conference, 2012.
  19. M-N Nguyen, E. Monier-Vinard, N. Laraqi, C-T. Dia, V. Bissuel, Calculation Limits of Homogeneous Effective Thermal Conductivity Approach in Modeling of PCB, Proceeding of the 20th Therminic Conference, 2014.

© 2017 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence