THERMAL SCIENCE

International Scientific Journal

Thermal Science - Online First

Authors of this Paper

External Links

online first only

Dual solutions of water-based micropolar nanofluid flow over a shrinking sheet with thermal transmission: Stability analysis

ABSTRACT
Investigation of the nature of dual solutions of the water-based micropolar nanofluid flow with thermal transmission due to a contracting surface has been done in the work. The flow is characterized by its shrinking velocity and imposed magnetic field. Also, this work is one of the contributions that illustrate the microrotation and microinertia descriptions of nanofluids. The effects of metallic nanoparticles Copper (Cu) and Copper oxide (CuO) have been discussed throughout this study. A uniform magnetic field has been applied in the normal direction of the flow. A set of basic equations that supports the present problem are derived from the principle of conservation laws and have been modernized into a set of solvable forms by employing suitable similarity variables. The MATLbuilt-in bvp4c solver scheme is engineered to solve this problem. In order to tackle boundary value problems that are highly non-linear, this numerical method largely relies on collocation and finite difference techniques. From this study, we have perceived that the speed of the motion of CuO-H2O nanofluid in both cases (the first and second solutions) is less than Cu-H2O nanofluid. The material parameter plays an important role by enhancing the heat transfer rate of the fluid at the surface of the sheet in both time-dependent and time-independent cases. From the stability analysis, the first solution has been found as the stable and physically attainable solution. Additionally, the material parameter aids in reducing the effects of couple stress and shear stress on the fluid in both situations near the surface.
KEYWORDS
PAPER SUBMITTED: 2023-01-28
PAPER REVISED: 2023-09-20
PAPER ACCEPTED: 2023-10-03
PUBLISHED ONLINE: 2023-12-10
DOI REFERENCE: https://doi.org/10.2298/TSCI230128253D
REFERENCES
  1. Choi, S. U. S.: Enhancing thermal conductivity of uids with nanoparticles. in Pro- ceedings of the 1995 ASME Int. Mech. Eng. Cong. and Exposition, San Francisco, USA, ASME FED 231/MD, pp. 99-105 (1995).
  2. Grigore, M. E.,Biscu, E. R., Holban, A. M., Gestal, M. C. and Grumezescu, A. M.: Methods of synthesis, properties and biomedical applications of CuO nanoparticles.Pharmaceuticals, 9(4), pp. 1-14 (2016).
  3. Chanie, A. G., Shankar, B. and Nandeppanavar, M. M.: MHD flow of nanofluids through a porous media due to a permeable stretching sheet.J. Nanofluids, 7(3), pp. 488-498 (2018).
  4. Ismail, H. N., Megahed, A. A., Abdel-Wahed, M. S. and Omama, M.: Thermal radiative effects on MHD casson nanofluid boundary layer over a moving surface. J. Nanofluids, 7(5), pp. 910-916 (2018).
  5. Gaikwad, S. N. and Chillal, S.: Radiation effect on MHD mixed convective flow of CU/CUO-water nanofluids in the presence of chemical reaction.J. Nanofluids, 7(3), pp. 509-515 (2018).
  6. Prasad, P. D., R. V. M. S. S., Kumar, K. and Varma, S. V. K.: Heat and mass transfer analysis for the MHD flow of nanofluid with radiation absorption.Ain Shams Eng. J., 9(4), pp. 801-813 (2018).
  7. Muhammad, S., Khan, H., Ali, G., Ali Shah, S. I., Ishaq, M. and Hussain, S. A.: Stagnation point nanofluid flow of Cu and Ag nanoparticles over a stretching surface with magnetic effects. J. Nanofluids, 8(6), pp. 1314-1318 (2019).
  8. Molli, S. and Naikoti, K.: MHD Natural Convective Flow of Cu-Water Nanofluid over a Past Infinite Vertical Plate with the Presence of Time Dependent Boundary Condition.Int. J. Thermofluid Sci. Technol., 7(4), pp. 1-15 (2020).
  9. Rajesh, V., Srilatha, M. and Chamkha, A. J.: Hydromagnetic effects on hybrid nanofluid (Cu-al2O3/Water) flow with convective heat transfer due to a stretching sheet.J. Nanofluids, 9(4), pp. 293-301 (2020).
  10. Tripathi, J., Vasu, B., Gorla, R. S. R., Chamkha, A. J., Murthy, P. V. S. N. and Bég, O. A.: Blood flow mediated hybrid nanoparticles in human arterial system: Recent research, development and applications. J. Nanofluids, 10(1), pp. 1-30 (2021).
  11. Sadeghi, M. S., Dogonchi, A. S., Ghodrat, M., Chamkha, A. J., Alhumade, H. and Karimi, N.: Natural convection of CuO-water nanofluid in a conventional oil/water separator cavity: Application to combined-cycle power plants. J. Taiwan Inst. Chem. Eng., 124, pp. 307-319 (2021).
  12. Dogonchi, A. S., Sadeghi, M. S., Ghodrat, M., Chamkha, A. J., Elmasry, Y. and Alsulami, R.: Natural convection and entropy generation of a nanoliquid in a crown wavy cavity: Effect of thermo-physical parameters and cavity shape. Case Stud. Therm. Eng., 27, p. 101208 (2021).
  13. Tayebi, T., Dogonchi, A. S., Karimi, N., Ge-JiLe, H., Chamkha, A. J. and Elmasry, Y.:Thermo-economic and entropy generation analyses of magnetic natural convective flow in a nanofluid-filled annular enclosure fitted with fins. Sustain. Energy Technol. Assessments, 46, p. 101274 (2021).
  14. Seyyedi, S. M., Dogonchi, A. S., Tilehnoee, M. H., Ganji, D. D. and Chamkha, A. J.: Second law analysis of magneto-natural convection in a nanofluid filled wavy-hexagonal porous enclosure. Int. J. Numer. Methods Heat Fluid Flow, 30(11), pp. 4811-4836 (2020).
  15. Krishna, M. V. and Chamkha, A. J.: Hall Effects on MHD Squeezing Flow of a Water-based Nanofluid Between Two Parallel Disks. J. Porous Media, 22(2), pp. 209-223 (2019).
  16. Eringen, A.: Theory of Micropolar Fluids. Indiana Univ. Math. J. (1966).
  17. Ariman, T., Turk, M. A. and Sylvester, N. D.: Applications of microcontinuum fluid mechanics. Int. J. Eng. Sci.,12(4), pp. 273-293 (1974).
  18. Anuradha, S. and Punithavalli, R.: MHD Boundary Layer Flow of a Steady Micro polar Fluid along a Stretching Sheet with Binary Chemical Reaction. Int. J. App. Eng. Res., 14(2), pp. 440-446 (2019).
  19. Krishna, M. V., Anand, P. V. S. and Chamkha, A. J.: Heat and Mass Transfer on Free Convective Flow of Amicropolar Fluid Through A Porous Surface with Inclined Magnetic Field and Hall Effects. Spec. Top. Rev. Porous Media An Int. J., 10(3), pp. 203-223 (2019).
  20. Hussain, S. T., Nadeem, S. and Haq, R. U.: Model-based analysis of micropolar nanofluid flow over a stretching surface. European Physical Journal Plus, 129(8) (2014).
  21. Liana, E., Fauzi, A., Ahmad, S. and Pop, I.: Flow over a permeable stretching sheet in micropolar nanofluids with suction. AIP Conference Proceedings 1605, 428 (2015).
  22. Maripala, K., Srinivas and Naikoti: Development Research Chemical Reaction Effects on Micropolar Nanofluid Flow over a MHD Radiative Stretching Surface with Thermal Conductivity. Int. J. Dev. Res., 6(12), pp. 10575-10581 (2016).
  23. Alizadeh, M., Dogonchi, A. S. and Ganji, D. D.: Micropolar nanofluid flow and heat transfer between penetrable walls in the presence of thermal radiation and magnetic field.Case Stud. Therm. Eng.,12(5), pp. 319-332 (2018).
  24. Dawar, A., Shah, Z., Kumam, P., Alrabiah, H., Khan, W., Islam, S. and Shaheem, N.: Chemically reactive MHD micropolar nanofluid flow with velocity slips and variable heat source/sink. Sci. Rep., 10(1), pp. 1-23 (2020).
  25. Saleem, A., Sabih, W., Nadeem, S., Ghalambaz, M. and Issakhov, A.: Theoretical aspects of micropolar nanofluid flow past a deformable rotating cone.Math. Methods Appl. Sci., June, pp. 1-19 (2020).
  26. Tayebi, T. and Chamkha, A. J.: Magnetohydrodynamic Natural Convection Heat Transfer of Hybrid Nanofluid in a Square Enclosure in the Presence of a Wavy Circular Conductive Cylinder. J. Therm. Sci. Eng. Appl., 12(3), paper no. 031009 (2020).
  27. Chamkha, A.J., Dogonchi, A. S. and Ganji, D. D.: Magnetohydrodynamic Nanofluid Natural Convection in a Cavity under Thermal Radiation and Shape Factor of Nanoparticles Impacts: A Numerical Study Using CVFEM. Appl. Sci., 8(12), p. 2396 (2018).
  28. Krishna, M. V. and Chamkha, A. J.: Hall and ion slip effects on MHD rotating boundary layer flow of nanofluid past an infinite vertical plate embedded in a porous medium. Results Phys., 15, p. 102652 (2019).
  29. Krishna, M. V. and Chamkha, A. J.: MHD Peristaltic Rotating Flow of A Couple Stress Fluid Through A Porous Medium with Wall and Slip Effects. Spec. Top. Rev. Porous Media An Int. J., 10(3), pp. 245-258 (2019).
  30. Crane, L. J.: Flow past a stretching plate.Zeitschrift für Angew. Math. und Phys. ZAMP, 21(4), pp. 645-647 (1970).
  31. Khan, W. A., Makinde, O. D. and Khan, Z. H.: Non-aligned MHD stagnation point flow of variable viscosity nanofluids past a stretching sheet with radiative heat. Int. J. Heat Mass Transf., 96, pp. 525-534 (2016).
  32. Ghosh, S. andMukhopadhyay, S.: Flow and heat transfer of nanofluid over an exponentially shrinking porous sheet with heat and mass fluxes.Propuls. Power Res., 7(3), pp. 268-275 (2018).
  33. Dey, D. and Borah, R.: Dual Solutions of Boundary Layer Flow with Heat and Mass Transfers over an Exponentially Shrinking Cylinder: Stability Analysis. Lat. Am. Appl. Res., 50(4), pp. 247-253 (2020).
  34. Dey, D., Hazarika, M. and Borah, R.: Entropy Generation Analysis of Magnetized Micropolar Fluid Streaming above an Exponentially Extending Plane. Lat. Am. Appl. Res., 51(4) (2021).
  35. Dey, D. and Chutia, B. Dusty nanofluid flow with bioconvection past a vertical stretching surface. J. King Saud Univ. - Eng. Sci, (2020).
  36. Zehra, I., Abbas, N., Amjad, M., Nadeem, S., Saleem, S. and Issakhov, A.: Casson nanoliquid flow with Cattaneo-Christov flux analysis over a curved stretching/shrinking channel. Case Stud. Therm. Eng., 27, p. 101146 (2021).
  37. Prasannakumara, B. C.: Numerical simulation of heat transport in Maxwell nanofluid flow over a stretching sheet considering magnetic dipole effect.Partial Differ. Equations Appl. Math., 4(6), p. 100064 (2021).
  38. Jamshed, W., Devi, S.U., Goodrazi, M., Prakash, M., Nisar, K.S., Zakarya, M. and Abdel-Aty, A.H.: Evaluating the unsteady Casson nanofluid over a stretching sheet with solar thermal radiation: An optimal case study.Case Stud. Therm. Eng., 26, p. 101160 (2021).
  39. Merkin, J. H.: On dual solutions occurring in mixed convection in a porous medium. J. Eng. Math., vol. 20, no. 2, pp. 171-179 (1986).
  40. Anuar, N. S. and Bachok, N.: Double solutions and stability analysis of micropolar hybrid nanofluid with thermal radiation impact on unsteady stagnation point flow.Mathematics, 9(3), pp. 1-18 (2021).
  41. Dey, D. and Borah, R.: Stability analysis on dual solutions of second- grade fluid flow with heat and mass transfers over a stretching sheet. Int. J. Thermofluid Sci. Technol., 8(2) (2021).
  42. Dey, D., Borah, R. and Mahanta, B.: Boundary Layer Flow and Its Dual Solutions Over a Stretching Cylinder: Stability Analysis. in Emerging Technologies in Data Mining and Information Security. Advances in Intelligent Systems and Computing, pp. 27-38 (2021).
  43. Waini, I., Ishak, A. and Pop, I.: Hiemenz flow over a shrinking sheet in a hybrid nanofluid. Results Phys., 19 (8), p. 103351 (2020).
  44. Khashi'ie, N. S., Arifin, N. M., Pop, I. and Wahid, N. S.: Flow and heat transfer of hybrid nanofluid over a permeable shrinking cylinder with Joule heating: A comparative analysis. Alexandria Eng. J., 59(3), pp. 1787-1798 (2020).
  45. Ahmadi, G. and Shahinpoor, M.: Universal stability of magneto-micropolar fluid motions.Int. J. Eng. Sci., 12(7), pp. 657-663 (1974).
  46. Ahmed, S. E., Mansour, M. A., Mahdy, A. and Mohamed, S. S.: Entropy generation due to double diffusive convective flow of Casson fluids over nonlinearity stretching sheets with slip conditions. Eng. Sci. Technol. an Int. J., 20(6), pp. 1553-1562 (2017).
  47. Mishra, G. S., Hussain, M.R., Makinde, O.D. and Seth, S.M.: Stability analysis and dual multiple solutions of a hydromagnetic dissipative flow over a stretching / shrinking sheet. Bulg. Chem. Commun., 52(2), pp. 259-271 (2020).
  48. Togun, H., Homod, R.Z. and Abdulrazzaq, T.: HYBRID AL2O3-CU-WATER NANOFLUID-FLOW AND HEAT TRANSFER OVER VERTICAL DOUBLE FORWARD-FACING STEP. Thermal Science, 25(5A), pp. 3517-3529 (2021).
  49. Dey, D., Makinde, O.D. and Borah, R.: Analysis of Dual Solutions in MHD Fluid Flow with Heat and Mass Transfer Past an Exponentially Shrinking/Stretching Surface in a Porous Medium. International Journal of Applied and Computational Mathematics., 8(66), (2022).