THERMAL SCIENCE

International Scientific Journal

Thermal Science - Online First

online first only

Combined financial and environmental optimization of a trigeneration system

ABSTRACT
This paper firstly studies the influence of variations in fuel tariffs and greenhouse gas emissions of the grid electricity on the financial and environmental metrics, demonstrating divergences when considered alone. Secondly, a combined economic and environmental objective function is proposed, yielding a good compromise between both concerns. Real data are available from a Brazilian Northeast building where electricity, heat (hot water), and cooling are important for comfort and well-being. When addressing the bicriteria optimization, consideration of 20% of one metric enormously improved the overall result, with only slightly worsening the other metric. This is possible because the optimization scheme can choose from a rich pool of physical and operational scenarios.
KEYWORDS
PAPER SUBMITTED: 2022-08-04
PAPER REVISED: 2022-09-22
PAPER ACCEPTED: 2022-09-30
PUBLISHED ONLINE: 2022-11-12
DOI REFERENCE: https://doi.org/10.2298/TSCI220804167S
REFERENCES
  1. N. M. Kumar, M. Samykano, and A. Karthick, "Energy loss analysis of a large scale BIPV system for university buildings in tropical weather conditions: A partial and cumulative performance ratio approach," Case Stud. Therm. Eng., vol. 25, no. February, p. 100916, 2021, doi: 10.1016/j.csite.2021.100916
  2. M. V. Mančić, D. S. Živković, M. L. Djordjević, M. S. Jovanović, M. N. Rajić, and D. M. Mitrović, "Techno-economic optimization of configuration and capacity of a polygeneration system for the energy demands of a public swimming pool building," Therm. Sci., vol. 22, pp. S1535-S1549, 2018, doi: 10.2298/TSCI18S5535M
  3. F. Weschenfelder et al., "A review on the complementarity between grid-connected solar and wind power systems," J. Clean. Prod., vol. 257, p. 120617, 2020, doi: 10.1016/j.jclepro.2020.120617
  4. H. Topal, T. Taner, Y. Altinsoy, and E. Amirabedin, "Application of trigeneration with direct co-combustion of poultry waste and coal a case study in the poultry industry from Turkey," Therm. Sci., vol. 22, no. 6, pp. 3073-3082, 2018, doi: 10.2298/TSCI170210137T
  5. T. Taner and M. Sivrioglu, "A techno-economic & cost analysis of a turbine power plant: A case study for sugar plant," Renew. Sustain. Energy Rev., vol. 78, no. May, pp. 722-730, 2017, doi: 10.1016/j.rser.2017.04.104
  6. T. Taner, "Optimisation processes of energy efficiency for a drying plant: A case of study for Turkey," Appl. Therm. Eng., vol. 80, pp. 247-260, 2015, doi: 10.1016/j.applthermaleng.2015.01.076
  7. S. C. S. Alcântara, A. A. V. Ochoa, J. A. P. da Costa, P. S. A. Michima, and H. C. N. Silva, "Natural gas based trigeneration system proposal to an ice cream factory: An energetic and economic assessment," Energy Convers. Manag., vol. 197, no. April, p. 111860, 2019, doi: 10.1016/j.enconman.2019.111860
  8. T. Taner and M. Sivrioglu, "Energy-exergy analysis and optimisation of a model sugar factory in Turkey," Energy, vol. 93, pp. 641-654, 2015, doi: 10.1016/j.energy.2015.09.007
  9. T. Taner, M. Sivrioğlu, H. Topal, A. S. Dalkılıç, and S. Wongwises, "A model of energy management analysis, case study of a sugar factory in Turkey," Sadhana - Acad. Proc. Eng. Sci., vol. 43, no. 3, 2018, doi: 10.1007/s12046-018-0793-2
  10. H. C. N. Silva, J. C. C. Dutra, J. A. P. Costa, A. A. V. Ochoa, C. A. C. dos Santos, and M. M. D. Araújo, "Modeling and simulation of cogeneration systems for buildings on a university campus in Northeast Brazil - A case study," Energy Convers. Manag., vol. 186, no. September 2018, pp. 334-348, 2019, doi: 10.1016/j.enconman.2019.02.062
  11. Leite et al., "Natural gas based cogeneration system proposal to a textile industry: a financial assessment," Energy Effic., vol. 14, no. 2, 2021, doi: 10.1007/s12053-021-09927-2
  12. B. S. M. C. Borba, L. F. Henrique, and D. C. Malagueta, "A novel stochastic optimization model to design concentrated photovoltaic/thermal systems: A case to meet hotel energy demands compared to conventional photovoltaic system," Energy Convers. Manag., vol. 224, no. September, p. 113383, 2020, doi: 10.1016/j.enconman.2020.113383
  13. L. Urbanucci, "Limits and potentials of Mixed Integer Linear Programming methods for optimization of polygeneration energy systems," Energy Procedia, vol. 148, pp. 1199-1205, 2018, doi: 10.1016/j.egypro.2018.08.021
  14. A. Algieri, P. Beraldi, G. Pagnotta, and I. Spadafora, "The optimal design, synthesis and operation of polygeneration energy systems: Balancing life cycle environmental and economic priorities," Energy Convers. Manag., vol. 243, no. February, p. 114354, 2021, doi: 10.1016/j.enconman.2021.114354
  15. X. Luo, J. Liu, Y. Liu, and X. Liu, "Bi-level optimization of design, operation, and subsidies for standalone solar/diesel multi-generation energy systems," Sustain. Cities Soc., vol. 48, no. December 2018, p. 101592, 2019, doi: 10.1016/j.scs.2019.101592
  16. L. Li, H. Mu, N. Li, and M. Li, "Economic and environmental optimization for distributed energy resource systems coupled with district energy networks," Energy, vol. 109, pp. 947-960, 2016, doi: 10.1016/j.energy.2016.05.026
  17. M. De Sousa Teixeira and S. De Oliveira Júnior, "Thermoeconomic evaluation of cogeneration systems for a chemical plant," Int. J. Appl. Thermodyn., vol. 4, no. 3, pp. 157-163, 2001, doi: 10.5541/ijot.76
  18. A. Asadi, M. Meratizaman, and A. A. Hosseinjani, "Feasibility study of small-scale gas engine integrated with innovative net-zero water desiccant cooling system and single-effect thermal desalination unit," Int. J. Refrig., vol. 119, pp. 276-293, 2020, doi: 10.1016/j.ijrefrig.2020.06.025
  19. COPERGAS, "Tarifas - 2021.
  20. ANEEL, APPROVAL RESOLUTION No. 2530 OF APRIL 16, 2019. 2019
  21. PréConsultants, "Simapro software," 2019. www.simapro.com
  22. Ecoinvent, "Ecoinvent. Database, version 3.5.," 2019. www.ecoinvent.org
  23. IPCC, "Intergovernmental Panel on Climate Change. Report Climate Change 2013: The Physical Science Basis.," NY/USA, 2013
  24. F. S. Magnani, P. P. da Silva, M. R. Guerra, and E. M. Hornsby, "Adaptability of optimized cogeneration systems to deal with financial changes occurring after the design period," Energy Build., vol. 58, pp. 183-193, Mar. 2013, doi: 10.1016/j.enbuild.2012.11.023
  25. Z. Gao, L. Guo, W. Ji, H. Xu, B. An, and J. Wang, "Thermodynamic and economic analysis of a trigeneration system based on liquid air energy storage under different operating modes," Energy Convers. Manag., vol. 221, no. July, p. 113184, 2020, doi: 10.1016/j.enconman.2020.113184
  26. Y. N. Dabwan and G. Pei, "A novel integrated solar gas turbine trigeneration system for production of power, heat and cooling: Thermodynamic-economic-environmental analysis," Renew. Energy, vol. 152, pp. 925-941, 2020, doi: 10.1016/j.renene.2020.01.088
  27. F. M. Melo, F. S. Magnani, and M. Carvalho, "A decision-making method to choose optimal systems considering financial and environmental aspects: Application in hybrid CCHP systems," Energy, vol. 250, p. 123816, 2022, doi: 10.1016/j.energy.2022.123816
  28. F. Calise, F. L. Cappiello, M. Dentice d'Accadia, and M. Vicidomini, "Thermo-economic optimization of a novel hybrid renewable trigeneration plant," Renew. Energy, vol. 175, pp. 532-549, 2021, doi: 10.1016/j.renene.2021.04.069
  29. K. Mohammadi, M. S. E. Khaledi, M. Saghafifar, and K. Powell, "Hybrid systems based on gas turbine combined cycle for trigeneration of power, cooling, and freshwater: A comparative techno-economic assessment," Sustain. Energy Technol. Assessments, vol. 37, no. December 2019, 2020, doi: 10.1016/j.seta.2020.100632
  30. F. M. Melo,, F. S. Magnani, and M. Carvalho, "optimization of an integrated combined cooling, heat, and power system with solar and wind contribution for buildings located in tropical areas," Int. J. energy reserach, vol. 46, no. 1, pp. 1263-1284, 2021, doi: 10.1002/er.7244
  31. J. Hou, J. Wang, Y. Zhou, and X. Lu, "Distributed energy systems: Multi-objective optimization and evaluation under different operational strategies," J. Clean. Prod., vol. 280, p. 124050, 2021, doi: 10.1016/j.jclepro.2020.124050
  32. F. Ren, Z. Wei, and X. Zhai, "Multi-objective optimization and evaluation of hybrid CCHP systems for different building types," Energy, vol. 215, p. 119096, 2021, doi: 10.1016/j.energy.2020.119096
  33. O. A. C. . Amarante, M. . Brower, J. . Zack, and A. L. de Sá, Atlas do Potencial Eólico Brasileiro. 2001
  34. J. Schmidt, R. Cancella, and A. O. Pereira, "An optimal mix of solar PV, wind and hydro power for a low-carbon electricity supply in Brazil," Renew. Energy, vol. 85, no. 2016, pp. 137-147, 2016, doi: 10.1016/j.renene.2015.06.010
  35. C. Viviescas et al., "Contribution of Variable Renewable Energy to increase energy security in Latin America: Complementarity and climate change impacts on wind and solar resources," Renew. Sustain. Energy Rev., vol. 113, no. November 2017, 2019, doi: 10.1016/j.rser.2019.06.039
  36. D. B. do Espirito Santo and W. L. R. Gallo, "Utilizing primary energy savings and exergy destruction to compare centralized thermal plants and cogeneration/trigeneration systems," Energy, vol. 120, no. december 2006, pp. 785-795, 2017, doi: 10.1016/j.energy.2016.11.130
  37. A. S. Marques, M. Carvalho, A. A. V. Ochoa, R. Abrahão, and C. A. C. Santos, "Life cycle assessment and comparative exergoenvironmental evaluation of a micro-trigeneration system," Energy, vol. 216, no. xxxx, 2021, doi: 10.1016/j.energy.2020.119310