THERMAL SCIENCE

International Scientific Journal

Authors of this Paper

External Links

IMPACT OF COIL PITCH ON HEAT TRANSFER ENHANCEMENT OF A TURBULENT FLOW OF α-AL2O3/DW NANOFLUID THROUGH HELICAL COILS

ABSTRACT
The current study experimentally examines the impact of coil pitch on heat transfer behavior and friction factor through helical coils for α- Al2O3/Distilled water nanofluid turbulent flow. These tests were conducted on coils with coil pitches of 20, 35, and 50 mm. The nanoparticle volume fraction was 0.1%. The nanoparticles in a 0.1% volume concentration of nanofluid increased the heat transfer rate and friction factor compared to those of distilled water. Increases in coil pitch also resulted in greater heat transfer efficiency. A correlation between the Reynolds number, the Prandtl number, and the curvature ratio of the coil was also shown to be connected to the Nusselt numbers for the flow of nanofluids within the coils.
KEYWORDS
PAPER SUBMITTED: 2023-02-27
PAPER REVISED: 2023-05-01
PAPER ACCEPTED: 2023-05-02
PUBLISHED ONLINE: 2023-06-11
DOI REFERENCE: https://doi.org/10.2298/TSCI230227131A
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2023, VOLUME 27, ISSUE Issue 6, PAGES [5005 - 5014]
REFERENCES
  1. P. Naphon and S. Wongwises, Review of flow and heat transfer characteristics in curved tubes, Renew. Sustain. Energy Rev., vol. 10, pp. 463-490, 2006, doi: 10.1016/j.rser.2004.09.014.
  2. M. Kahani, S. Z. Heris, and S. M. Mousavi, Effects of Curvature Ratio and Coi Pitch Spacing on Heat Transfer Performance of Al2O3/Water Nanofluid Laminar Flow through Helical Coi s, J. Dispers. Sci. Technol., vol. 34, no. 12, pp. 1704-1712, 2013, doi: 10.1080/01932691.2013.764485.
  3. S. Liu and J. H. Masliyah, DECOUPLING NUMERICAL METHOD FOR FLUID FLOW, Int. J. Numer. METHODS FLUIDS, vol. 16, no. June 1991, pp. 659-682, 1993.
  4. Romeo, Manlapaz, Stuart, and Churchill, Fully developed laminar convection from a helica coil fully deve oped laminar convection, Chem. Eng. Commun., vol. 9, no. July 2012, pp. 185-200, 2007.
  5. S. V Patankar, V. S. Pratap, and D. B. Spalding, Prediction of turbu ent f ow in curved pipes, in NUMERICAL PREDICTION OF FLOW, HEAT TRANSFER, TURBULENCE AND COMBUSTION: Selected Works of Professor D. Brian Spalding, vol. 67, no. 1968, Pergamon Press, Ltd, 1975, pp. 147-159. doi: 10.1016/B978-0-08-030937-8.50019-2.
  6. L. Guo, X. Chen, Z. Feng, and B. Bai, Transient convective heat transfer in a he ica coi ed tube with pu sati e fu y deve oped turbu ent f ow, Int. J. Heat Mass Transf., vol. 41, pp. 2867-2875, 1998.
  7. M. P. Beck, Æ. Y. Yuan, P. Warrier, and Æ. A. S. Teja, ethylene glyco +water mixtures The thermal conductivity of alumina nanofluids in water , ethylene glycol , and ethylene glyco +water mixtures, J. Nanoparticle Res., no. May 2014, 2009, doi: 10.1007/s11051-009-9716-9.
  8. L. Chen, H. Xie, W. Yu, and Y. Li, Rheologica Behaviors of Nanofluids Containing Mu ti- Walled Carbon Nanotube Rheological Behaviors of Nanofluids Containing Multi-Walled Carbon Nanotube, J. Dispers. Sci. Technol., vol. 32, no. June 2012, pp. 550-554, 2011, doi: 10.1080/01932691003757223.
  9. C. K einstreuer and Y. Feng, Experimenta and theoretica studies of nanofluid therma conductivity enhancement : a review, Nanoscale Res. Lett., pp. 1-13, 2011, doi: 10.1186/1556-276X-6-229.
  10. H. minfar and R. Mota ebzadeh, Investigation of the Velocity Fie d and Nanoparticle Concentration Distribution of Nanofluid Using Lagrangian-Eu erian pproach, J. Dispers. Sci. Technol., vol. 33, no. September 2014, pp. 155-163, 2012, doi: 10.1080/01932691.2010.528336.
  11. J. N. So anki, Z. V. P. Murthy, J. N. So anki, and Z. V. P. Murthy, Preparation of Si ver Nanofluids with High Electrical Conductivity Preparation of Silver Nanofluids with High E ectrica Conductivity, J. Dispers. Sci. Technol., vol. 32:5, no. February 2013, pp. 724-730, 2011, doi: 10.1080/01932691.2010.480863.
  12. S. M. S. Murshed, K. C. Leong, and C. Yang, Thermophysical and electrokinetic properties of nanofluids - critical review, Appl. Therm. Eng., vol. 28, pp. 2109-2125, 2008, doi: 10.1016/j.applthermaleng.2008.01.005.
  13. W. Yu, H. Xie, and X. Wang, Enhanced Therma Conductivity of Liquid Paraffin Based Nanofluids Containing Copper Nanopartic es, J. Dispers. Sci. Technol., vol. 32:7, no. May 2015, pp. 948-951, 2011, doi: 10.1080/01932691.2010.488503.
  14. H. Aminfar and R. Mota ebzadeh, Numerica Investigation of the Effects of Nanopartic e Diameter on Velocity Field and Nanoparticle Distribution of Nanofluid Using Lagrangian-Eulerian Approach, J. Dispers. Sci. Technol., vol. 32:9, no. November 2014, pp. 1311-1317, 2011, doi: 10.1080/01932691.2010.505815.
  15. Q. Li and Y. Xuan, Convective heat transfer performances of fluids with nano-particles, Int. Heat Transf. Conf. Digit. Libr., 2002.
  16. M. Rakhsha, F. kbaridoust, . bbassi, and S. . Majid, Experimental and numerical investigations of turbulent forced convection flow of nano-fluid in helical coiled tubes at constant surface temperature, Powder Technol., vol. 283, pp. 178-189, 2015, doi: 10.1016/j.powtec.2015.05.019.
  17. M. Hojjat, S. G. Etemad, R. Bagheri, and J. Thibault, Pressure Drop of Non-Newtonian Nanofluids F owing Through a Horizonta Circu ar Tube, J. Dispers. Sci. Technol., vol. 33:7, no. November 2014, pp. 1066-1070, 2012, doi: 10.1080/01932691.2011.599216.
  18. A. P. Sasmito, J. C. Kurnia, and . S. Mujumdar, Numerical evaluation of laminar heat transfer enhancement in nanofluid flow in coiled square tubes, Nanoscale Res. Lett., vol. 6, pp. 1-14, 2011, doi: 10.1186/1556-276X-6-376.
  19. N. Jamshidi, M. Farhadi, K. Sedighi, and D. D. Ganji, ptimization of design parameters for nanof uids f owing inside he ica coi s, Int. Commun. Heat Mass Transf., vol. 39, no. 2, pp. 311-317, 2012, doi: 10.1016/j.icheatmasstransfer.2011.11.013.
  20. S. Algarni, V. Tirth, T. Alqahtani, P. R. Kshirsagar, and W. bera, n Empirica na ysis of Heat Expu sion and Pressure Drop ttribute in He ica Coi Tube Using Nanomateria s, J. Nanomater., vol. \, pp. 1-8, 2022, doi: 10.1155/2022/9712065.
  21. A. Ebrahimi-Moghadam, F. Gohari, D. Hoseinzade, and M. Deymi-Dashtebayaz, comprehensive thermo-hydraulic analysis and optimization of turbulent TiO2/W-EG nano-fluid flow inside double-pipe heat exchangers with he ica coi inserts, J. Brazilian Soc. Mech. Sci. Eng., vol. 42, no. 5, p. 232, May 2020, doi: 10.1007/s40430-020-02320-7.
  22. L. Syam Sundar, N. T. Ravi Kumar, M. T. Naik, and K. V. Sharma, Effect of full length twisted tape inserts on heat transfer and friction factor enhancement with Fe 3O 4 magnetic nanofluid inside a p ain tube: n experimental study, Int. J. Heat Mass Transf., vol. 55, no. 11-12, pp. 2761-2768, 2012, doi: 10.1016/j.ijheatmasstransfer.2012.02.040.
  23. L. S. Sundar and K. V. Sharma, Turbu ent heat transfer and friction factor of Al2O3 Nanofluid in circular tube with twisted tape inserts, Int. J. Heat Mass Transf., vol. 53, no. 7-8, pp. 1409-1416, 2010, doi: 10.1016/j.ijheatmasstransfer.2009.12.016.
  24. A. Akbarinia and A. Behzadmehr, Numerical study of laminar mixed convection of a nanofluid in horizonta curved tubes, Appl. Therm. Eng., vol. 27, pp. 1327-1337, 2007, doi: 10.1016/j.applthermaleng.2006.10.034.
  25. G. Huminic and . Huminic, Heat transfer characteristics in double tube helica heat exchangers using nanofluids, Int. J. Heat Mass Transf., vol. 54, no. 19-20, pp. 4280-4287, 2011, doi: 10.1016/j.ijheatmasstransfer.2011.05.017.
  26. A. H. Mola, A. H. Askar, and G. K. Salman, Experimenta Enhancement of He ica Coi Tube Heat Exchanger Using CuFe 4/Water Nanof uids, J. Mech. Eng. Res. Dev., vol. 43, no. 6, pp. 94-105, 2020.
  27. V. Sisodiya and D. . Geete, Heat Transfer na ysis of Helical Coil Heat Exchanger With Nano F uid, Int. Res. J. Eng. Technol., vol. 3, no. 12, pp. 366-370, 2016,
  28. P. C. M. Kumar, J. Kumar, and S. Suresh, Experimenta investigation on convective heat transfer and friction factor in a he ica y coi ed tube with / water nanof uid, J. Mech. Sci. Technol., vol. 27, no. 1, pp. 239-245, 2013, doi: 10.1007/s12206-012-1206-9.
  29. N. M. Muhammad et al., Effect of corrugated minichanne variab e width on entropy generation for convective heat transfer of alpha-Alumina-water nanof uid, J. Phys. Conf. Ser., vol. 2053, no. 1, p. 012016, 2021, doi: 10.1088/1742-6596/2053/1/012016.
  30. S. H. A. Sultan, Khalid Faisal, T. Z. Farge, ugmentation of Heat Transfer for Spiral Coil Heat Exchanger in So ar Energy Systems By Using Nano f uids, 5th Int. Sci. Conf. Nanotechnol. Adv. Mater. Their Appl. ICNAMA, vol. 33, no. 9, pp. 1619-1634, 2015.
  31. Z. Wu, L. Wang, and B. Sundén, Pressure drop and convective heat transfer of water and nanofluids in a double-pipe he ica heat exchanger, Appl. Therm. Eng., vol. 60, no. 1-2, pp. 266-274, 2013, doi: 10.1016/j.applthermaleng.2013.06.051.
  32. G. F. C. Rogers and Y. R. Mayhew, Heat transfer and pressure oss in he ica y coi ed tubes with turbu ent f ow, Int. J. Heat Mass Transf., vol. 7, no. 11, pp. 1207-1216, 1964, doi: 10.1016/0017-9310(64)90062-6.
  33. A. Sheeba, C. M. Abhijith, and M. Jose Prakash, Experimenta and numerica investigations on the heat transfer and flow characteristics of a he ica coi heat exchanger, Int. J. Refrig., vol. 99, pp. 490-497, 2019, doi: 10.1016/j.ijrefrig.2018.12.002.
  34. A. H. Shiravi, M. Shafiee, M. Firoozzadeh, H. Bostani, and M. Bozorgmehrian, Experimenta study on convective heat transfer and entropy generation of carbon black nanofluid turbulent f ow in a he ica coi ed heat exchanger, J. Therm. Anal. Calorim., vol. 145, no. 2, pp. 597-607, 2021, doi: 10.1007/s10973-020-09729-1.

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence