THERMAL SCIENCE

International Scientific Journal

CHEMICAL AND THERMODYNAMIC PROPERTIES OF BOMBYX MORI (DOMESTIC SILK MOTH): EMPIRICAL FORMULA, DRIVING FORCE, AND BIOSYNTHESIS, CATABOLISM AND METABOLISM REACTIONS

ABSTRACT
Biothermodynamics is a discipline which has developed intensely during the last 50 years. Thermodynamic properties have been reported for humans, animals, plants, and microorganisms. However, this paper reports for the first time the empirical formula and thermodynamic properties for insects. Thermodynamic properties can be applied in research on thermodynamic interactions between organisms and their environment, as well as between organisms themselves. This paper reports for the first time the empirical formula and reactions of catabolism, biosynthesis and entire metabolism for Bombyx mori (domestic silk moth), as well as the thermodynamic properties of Bombyx mori. It is shown that growth of Bombyx mori is tightly related to catabolism of carbohydrates and lipids, which represents the driving force for the entire metabolism.
KEYWORDS
PAPER SUBMITTED: 2023-09-01
PAPER REVISED: 2023-09-24
PAPER ACCEPTED: 2023-10-05
PUBLISHED ONLINE: 2023-11-11
DOI REFERENCE: https://doi.org/10.2298/TSCI230901242P
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2023, VOLUME 27, ISSUE Issue 6, PAGES [4893 - 4910]
REFERENCES
  1. Carnot, L., Essai sur les machines en général. (French, Essay on machines in general), De l'imprimerie de Defay, Dijon, France, 1786. ISBN-13: 978-1147666625
  2. Carnot, L., Principes fondamentaux de l'é uilibre et du movement. (French, Fundamental principles of equilibrium and movement), De l'imprimerie de Crapelet, Paris, France, 1803. ISBN: 2016170190
  3. Carnot, S., Réflexions sur la puissance motrice du feu et sur les machines propres à développer cette puissance. (French, Reflections on the motive power of fire and on machines fitted to develop that power), Bachelier, Paris, France, 1824. ISBN-13: 978-0486446417
  4. Lavoisier, A.L., marquis de Laplace, P.S., Mémoire sur la chaleur: Lû à'Académie royale des sciences, le 28 Juin 1783. (French, Memoir on Heat Read to the Royal Academy of Sciences, 28 June 1783) De l'Imprimerie royale, Paris, France, 1783.
  5. Lavoisier, A. L., DeLaplace, P. S., Memoir on heat read to the royal academy of sciences, 28 june 1783. Obesity research, 2 (1994), 2, 189-202. doi.org/10.1002/j.1550-8528.1994.tb00646.x
  6. Clausius, R., The Mechanical Theory of Heat - with its Applications to the Steam Engine and to Physical Properties of Bodies, John van Voorst; London, UK, 1867.
  7. Clausius, R., On a Mechanical Theorem Applicable to Heat, Philosophical Magazine Series 4, 40 (1870), 265, p. 122-127. doi.org/10.1080/14786447008640370
  8. Clausius, R., On different forms of the fundamental equations of the mechanical theory of heat and their convenience for application, in: The Second Law of Thermodynamics (Ed. J. Kestin), Dowen, Hutchingson and Ross, Inc., Stroudsburg, PA, (1976), pp. 162-193. ISBN-13: 978-0470989449
  9. Müller, I., A History of Thermodynamics: The Doctrine of Energy and Entropy. Springer, Berlin, Germany, 2010. ISBN-13: 978-3642079641
  10. Popovic, M., Living organisms from Prigogine's perspective: an opportunity to introduce students to biological entropy balance. Journal of Biological Education, 52 (2018), 3, 294-300. doi.org/10.1080/00219266.2017.1357649
  11. Schrödinger, E., What is life? The physical aspect of the living cell, Cambridge University Press, Cambridge, UK, 1944. ISBN: 0-521-42708-8
  12. Prigogine, I., Wiame, J.M., Biologie et thermodynamique des phénomènes irréversibles (French, Biology and thermodynamics of irreversible phenomena), Experientia, 2 (1946), 451-453. doi.org/10.1007/BF02153597
  13. Prigogine, I., Time, structure, and fluctuations. Science, 201 (1978), 4358, 777-785. doi.org/10.1126/science.201.4358.777
  14. Prigogine, I. (1977). Nobel lecture: Time, Structure and Fluctuations.
  15. Prigogine, I., Etude thermodynami ue des phénom nes irréversibles (French, Thermodynamic study of irreversible phenomena), Dunod, Paris, France, 1947. WorldCat ID: 421502786
  16. Glansdorff, P., Prigogine, I., Thermodynamic Theory of Structure, Stability and Fluctuations. Wiley, Hoboken, NJ, 1971. ISBN-13: 978-0471302803
  17. Kondepudi, D., Prigogine, I. Modern thermodynamics: from heat engines to dissipative structures. John Wiley & Sons, Hoboken, NJ, 2014. doi.org/10.1002/9781118698723
  18. Prigogine, I., Rice, S. A., Proteins: A Theoretical Perspective of Dynamics, Structure, and Thermodynamics, Vol. 71 (Vol. 86). John Wiley & Sons, Hoboken, NJ, 1991. ISBN: 0-471-62801-8
  19. Prigogine, I., Nicolis, G. Biological order, structure and instabilities1. Quarterly reviews of biophysics, 4 (1971), 2-3, 107-148.
  20. Morowitz, H. J., et al., The origin of intermediary metabolism. Proceedings of the National Academy of Sciences, 97 (2000), 14, 7704-7708. doi.org/10.1073/pnas.110153997
  21. Morowitz, H., The emergence of complexity. Complexity, 1 (1995), 1, 4-5. doi.org/10.1002/cplx.6130010102
  22. Morowitz, H.J., Beginnings of Cellular Life: Metabolism Recapitulates Biogenesis. Yale University Press, New Haven, CT, 1992.
  23. Morowitz, H.J., et al., The chemical logic of a minimum protocell. Origins Life Evol Biosphere, 18 (1988), 281-287. doi.org/10.1007/BF01804674
  24. Morowitz, H.J., The high cost of being human. The New York Times, February 11 (1976), p.45. Available at: www.nytimes.com/1976/02/11/archives/the-high-cost-of-being-human.html
  25. Morowitz, H.J., Energy Flow in Biology: Biological Organization as a Problem in Thermal Physics. Academic Press, New York, NY, 1968.
  26. Morowitz, H.J., Some order-disorder considerations in living systems. Bulletin of Mathematical Biophysics, 17 (1955), 81-86. doi.org/10.1007/BF02477985
  27. Hansen, L. D., et al., Transformation of matter in living organisms during growth and evolution. Biophysical Chemistry, 271 (2021), 106550. doi.org/10.1016/j.bpc.2021.106550
  28. Hansen, L. D., et al., Laws of evolution parallel the laws of thermodynamics, The Journal of Chemical Thermodynamics, 124 (2018), 141-148. doi.org/10.1016/j.jct.2018.05.005
  29. Hansen, L. D., et al., Biological calorimetry and the thermodynamics of the origination and evolution of life, Pure and Applied Chemistry, 81 (2009), 10, 1843-1855. doi.org/10.1351/PAC-CON-08-09-09
  30. Hansen, L. D., et al., From biochemistry to physiology: The calorimetry connection. Cell biochemistry and biophysics, 49 (2007), 2, 125-140. doi.org/10.1007/s12013-007-0049-y
  31. Hansen, L. D., et al., Use of calorespirometric ratios, heat per CO2 and heat per O2, to quantify metabolic paths and energetics of growing cells, Thermochimica Acta, 422 (2004), 1-2, 55-61. doi.org/10.1016/j.tca.2004.05.033
  32. Hansen, L. D., et al., Kinetics of plant growth and metabolism, Thermochimica Acta 388 (2002), 1-2, 415-425. doi.org/10.1016/S0040-6031(02)00021-7
  33. Hansen, L.D., et al., Responses of plant growth and metabolism to environmental variables predicted from laboratory measurements. USDA Forest Service Proceedings RMRS-P-00 (2001), 1-6.
  34. Ellingson, D., et al., Determination of the enthalpy change for anabolism by four methods, Thermochimica acta, 400 (2003), 1-2, 79-85. doi.org/10.1016/S0040-6031(02)00481-1
  35. Russell, D.J., Hansen, L.D., Calorimeters for biotechnology, Thermochimica acta, 445 (2006), 2, 151-159. doi.org/10.1016/j.tca.2005.08.023
  36. Macfarlane, C., et al., Application of an enthalpy balance model of the relation between growth and respiration to temperature acclimation of Eucalyptus globulus seedlings, Proceedings of the Royal Society of London. Series B: Biological Sciences, 269 (2002), 1499, 1499-1507. doi.org/10.1098/rspb.2002.2030
  37. Smith, B.N., et al., Time, plant growth, respiration, and temperature, in: Handbook of plant and crop physiology (Ed. M. Pessarakli), CRC Press, Boca Raton, FL, 2001, pp. 23-34. ISBN: 9780429208096
  38. Robinson, C. M., et al., Temperature Response of Metabolic Activity of an Antarctic Nematode. Biology, 12 (2023), 1, 109. MDPI AG. Retrieved from dx.doi.org/10.3390/biology12010109
  39. Von Stockar, U., Live cells as open non-equilibrium systems, in: Biothermodynamics: The Role of Thermodynamics in Biochemical Engineering (Ed. U. von Stockar), EPFL Press, Lausanne, Switzerland, 2013, pp. 399-421. doi.org/10.1201/b15428
  40. Von Stockar, U. Biothermodynamics of live cells: energy dissipation and heat generation in cellular structures. in: Biothermodynamics: The Role of Thermodynamics in Biochemical Engineering (Ed. U. von Stockar), EPFL Press, Lausanne, Switzerland, 2013, pp. 475-534. doi.org/10.1201/b15428
  41. Von Stockar, U., et al., Thermodynamic analysis of metabolic pathways. Biothermodynamics of live cells: energy dissipation and heat generation in cellular structures. in: Biothermodynamics: The Role of Thermodynamics in Biochemical Engineering (Ed. U. von Stockar), EPFL Press, Lausanne, Switzerland, 2013, pp. 581-604. doi.org/10.1201/b15428
  42. von Stockar, U., et al., Can microbial growth yield be estimated using simple thermodynamic analogies to technical processes?. Chemical Engineering and Processing: Process Intensification, 47 (2008), 6, 980-990. doi.org/10.1016/j.cep.2007.02.016
  43. Von Stockar, U., et al., Thermodynamics of microbial growth and metabolism: an analysis of the current situation. Journal of Biotechnology, 121 (2006), 4, 517-533. doi.org/10.1016/j.jbiotec.2005.08.012
  44. von Stockar, U., et al., Thermodynamic considerations in constructing energy balances. Biochimica et Biophysica Acta, 1183 (1993), 221-240. doi.org/10.1016/0005-2728(93)90225-5
  45. von Stockar, U., Liu, J., Does microbial life always feed on negative entropy? Thermodynamic analysis of microbial growth. Biochimica et biophysica acta, 1412 (1999), 3, 191-211. doi.org/10.1016/s0005-2728(99)00065-1
  46. Maskow, T., von Stockar, U., How reliable are thermodynamic feasibility statements of biochemical pathways?. Biotechnology and bioengineering, 92 (2005), 2, 223-230. doi.org/10.1002/bit.20572
  47. Schill, N. A., et al., Thermodynamic analysis of growth of Methanobacterium thermoautotrophicum. Biotechnology and bioengineering, 64 (1999), 1, 74-81. doi.org/10.1002/(SICI)1097-0290(19990705)64:1%3C74::AID-BIT8%3E3.0.CO;2-3
  48. Assael, M.J., et al., Commonly Asked Questions in Thermodynamics, 2nd ed., CRC Press, Boca Raton, FL, 2022. ISBN: 9780367338916 doi.org/10.1201/9780429329524
  49. Battley E. H., A theoretical study of the thermodynamics of microbial growth using Saccharomyces cerevisiae and a different free energy equation. The Quarterly review of biology, 88 (2013), 2, 69-96. doi.org/10.1086/670529
  50. Battley, E.H., An empirical method for estimating the entropy of formation and the absolute entropy of dried microbial biomass for use in studies on the thermodynamics of microbial growth. Thermochimica Acta, 326 (1999), 1-2, 7-15. doi.org/10.1016/S0040-6031(98)00584-X
  51. Battley, E.H., The thermodynamics of microbial growth, in: Handbook of Thermal Analysis and Calorimetry, vol. 4: From Macromolecules to Man (Ed. E.B. Kemp) Elsevier, Amsterdam, Netherlands, 1999, pp. 219-235. doi.org/10.1016/S1573-4374(99)80008-9
  52. Battley, E. H., The development of direct and indirect methods for the study of the thermodynamics of microbial growth. Thermochimica Acta, 309 (1998), 1-2, 17-37. doi.org/10.1016/S0040-6031(97)00357-2
  53. Battley, E.H., et al., Heat capacity measurements from 10 to 300 K and derived thermodynamic functions of lyophilized cells of Saccharomyces cerevisiae including the absolute entropy and the entropy of formation at 298.15 K. Thermochimica Acta, 298 (1997), 1-2, 37-46. doi.org/10.1016/S0040-6031(97)00108-1
  54. Battley, E. H., On the thermodynamics of autotrophic and heterotrophic growth of Pseudomonas saccharophila. Canadian journal of Microbiology, 42 (1996), 1, 38-45. doi.org/10.1139/m96-006
  55. Battley, E. H., The advantages and disadvantages of direct and indirect calorimetry. Thermochimica acta, 250 (1995), 2, 337-352. doi.org/10.1016/0040-6031(94)01963-H
  56. Battley, E.H., Calculation of entropy change accompanying growth of Escherichia coli K‐12 on succinic acid. Biotechnology and bioengineering, 41 (1993), 4, 422-428. doi.org/10.1002/bit.260410405
  57. Battley, E.H., On the enthalpy of formation of Escherichia coli K-12 cells, Biotechnology and Bioengineering, 39 (1992), 5-12. doi.org/10.1002/bit.260390103
  58. Battley, E.H., Calculation of thermodynamic properties of protein in Escherichia coli K‐12 grown on succinic acid, energy changes accompanying protein anabolism, and energetic role of ATP in protein synthesis. Biotechnology and bioengineering, 40 (1992), 2, 280-288. doi.org/10.1002/bit.260400212
  59. Battley, E.H., Stone, J.R., A comparison of values for the entropy and the entropy of formation of selected organic substances of biological importance in the solid state, as determined experimentally or calculated empirically. Thermochimica acta, 349 (2000), 1-2, 153-161. doi.org/10.1016/S0040-6031(99)00509-2
  60. Maskow, T., Paufler, S., What does calorimetry and thermodynamics of living cells tell us?. Methods, 76 (2015), 3-10. doi.org/10.1016/j.ymeth.2014.10.035
  61. Maskow, T., Babel, W., Thermokinetic description of anaerobic growth of Halomonas halodenitrificans using a static microcalorimetric ampoule technique. Journal of Biotechnology, 101 (2003), 3, 267-274. doi.org/10.1016/S0168-1656(02)00341-3
  62. Maskow, T., Babel, W. Calorimetric analysis of microorganisms in transient growth states to quantify changes of metabolic fluxes in response to nutrient deficiencies and osmostress. Thermochimica Acta, 382 (2002), 1-2, 229-237. doi.org/10.1016/S0040-6031(01)00742-0
  63. Maskow, T., Babel, W. Calorimetrically obtained information about the efficiency of ectoine synthesis from glucose in Halomonas elongata. Biochimica et Biophysica Acta (BBA)-General Subjects, 1527 (2001), 1-2, 4-10. doi.org/10.1016/S0304-4165(01)00115-5
  64. Maskow, T., Kemp, R.B., BIOPROCESS ENGINEERING-BIOPROCESS ANALYSIS THROUGH CALORIMETRY AND BIOTHERMODYNAMICS. Encyclopedia of Life Support Systems: Biotechnology, (2008), 181-191.
  65. Maskow, T., Kleinsteuber, S., Carbon and energy fluxes during haloadaptation of Halomonas sp. EF11 growing on phenol, Extremophiles, 8 (2004), 133-141. doi.org/10.1007/s00792-003-0372-1
  66. Maskow, T., Harms, H. Real time insights into bioprocesses using calorimetry: state of the art and potential. Engineering in Life Sciences, 6 (2006), 3, 266-277. doi.org/10.1002/elsc.200520123
  67. Maskow, T., et al., Rapid analysis of bacterial contamination of tap water using isothermal calorimetry. Thermochimica acta, 543 (2012), 273-280. doi.org/10.1016/j.tca.2012.06.002
  68. Duong, H. L., et al., Applicability and information value of biocalorimetry for the monitoring of fungal solid-state fermentation of lignocellulosic agricultural by-products. New Biotechnology, 66 (2022), 97-106.
  69. Mariana, F., et al., Isothermal titration calorimetry—A new method for the quantification of microbial degradation of trace pollutants. Journal of microbiological Methods, 82 (2010), 1, 42-48. doi.org/10.1016/j.mimet.2010.03.024
  70. Hoffmann, P., et al., A thermodynamic investigation of the glucose-6-phosphate isomerization. Biophysical chemistry, 195 (2014), 22-31. doi.org/10.1016/j.bpc.2014.08.002
  71. Skene, K., Life's a Gas: A Thermodynamic Theory of Biological Evolution, Entropy, 17 (2015), 12, 5522-5548. MDPI AG. Retrieved from dx.doi.org/10.3390/e17085522
  72. Barros, N., Thermodynamics of Soil Microbial Metabolism: Applications and Functions. Applied Sciences, 11 (2021), 11, 4962. dx.doi.org/10.3390/app11114962
  73. Barros, N., et al., Calorimetry and soil, Thermochimica Acta, 458 (2007), 1-2, 11-17. doi.org/10.1016/j.tca.2007.01.010
  74. Barros, N., Feijóo, S., A combined mass and energy balance to provide bioindicators of soil microbiological quality, Biophysical chemistry, 104 (2003), 3, 561-572. doi.org/10.1016/s0301-4622(03)00059-0
  75. Barros Pena, N., Calorimetry and soil biodegradation: Experimental procedures and thermodynamic models, Toxicity and Biodegradation Testing, (2018), 123-145. doi.org/10.1007/978-1-4939-7425-2_7
  76. Seppelt, A., et al., Thermodynamic characterization of LF, H, and mineral soil layers from oak forest ecosystems: Exploring the role of proximate analysis, Environmental Research, (2023), 115310. doi.org/10.1016/j.envres.2023.115310
  77. Lucia, U., et al., Thermodynamics and SARS-CoV-2: neurological effects in post-Covid 19 syndrome, Atti della Accademia Peloritana dei Pericolanti, 99 (2021), 2, A3. doi.org/10.1478/AAPP.992A3
  78. Lucia, U., et al., Seebeck-like effect in SARS-CoV-2 bio-thermodynamics, Atti della Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche, Matematiche e Naturali, 98 (2020), 2, 6. doi.org/10.1478/AAPP.982A6
  79. Lucia, U., et al., Entropy-based pandemics forecasting, Frontiers in Physics, 8 (2020), 274. doi.org/10.3389/fphy.2020.00274
  80. Lucia, U., Bio-engineering thermodynamics: an engineering science for thermodynamics of biosystems, International Journal of Thermodynamics, 18 (2015), 4, 254-265. doi.org/10.5541/ijot.5000131605
  81. Lucia, U., Bioengineering thermodynamics of biological cells, Theoretical Biology and Medical Modelling, 12 (2015), 1, 1-16. doi.org/10.1186/s12976-015-0024-z
  82. Lucia, U., Entropy generation approach to cell systems, Physica A: Statistical Mechanics and its Applications, 406 (2014), 1-11. doi.org/10.1016/j.physa.2014.03.050
  83. Grisolia, G., et al., Biomethanation of rice straw: a sustainable perspective for the valorisation of a field residue in the energy sector, Sustainability, 14 (2022), 9, 5679. doi.org/10.3390/su14095679
  84. Kaniadakis, G., et al. The κ-statistics approach to epidemiology, Sci Rep 10 (2020), 19949. doi.org/10.1038/s41598-020-76673-3
  85. Öngel, M. E., et al.,Thermodynamic assessment of the effects of intermittent fasting and fatty liver disease diets on longevity, Entropy, 25 (2023), 2, 227. doi.org/10.3390/e25020227
  86. Yildiz, C., Özilgen, M., Species‐specific biological energy storage and reuse, Energy Storage, (2022), e382. doi.org/10.1002/est2.382
  87. Yildiz, C., Özilgen, M., Why brain functions may deteriorate with aging: a thermodynamic evaluation, International Journal of Exergy, 37 (2022), 1, 87-101. doi.org/10.1504/IJEX.2022.120110
  88. Semerciöz, A. S., Özilgen, M., How much energy is needed to keep the stored cellular mass and energy free of errors: Case studies, Energy Storage, 5 (2023), 1, e389. doi.org/10.1002/est2.389
  89. Özilgen, M., Exergetic growth efficiency of Kluyveromyces fragilis on complex organic and minimal inorganic media, International Journal of Exergy, 40 (2023), 3, 336-346. doi.org/10.1504/IJEX.2023.129800
  90. Yildiz, C., et al., Organisms live at far-from-equilibrium with their surroundings while maintaining homeostasis, importing exergy and exporting entropy, International Journal of Exergy, 31 (2020), 3, 287-301. doi.org/10.1504/IJEX.2020.106457
  91. Özilgen, M., Yilmaz, B., COVID‐19 disease causes an energy supply deficit in a patient. International journal of energy research, 45 (2021), 2, 1157. doi.org/10.1002%2Fer.5883
  92. Popovic, M.E., XBB.1.5 Kraken cracked: Gibbs energies of binding and biosynthesis of the XBB.1.5 variant of SARS-CoV-2, Microbiological research, 270 (2023), 127337. doi.org/10.1016/j.micres.2023.127337
  93. Popovic, M., Never ending story? Evolution of SARS-CoV-2 monitored through Gibbs energies of biosynthesis and antigen-receptor binding of Omicron BQ.1, BQ.1.1, XBB and XBB.1 variants. Microbial risk analysis, 23 (2023), 100250. doi.org/10.1016/j.mran.2023.100250
  94. Popovic, M., Biothermodynamics of Viruses from Absolute Zero (1950) to Virothermodynamics (2022), Vaccines, 10 (2022), 12, 2112. dx.doi.org/10.3390/vaccines10122112
  95. Popovic, M., Thermodynamic properties of microorganisms: determination and analysis of enthalpy, entropy, and Gibbs free energy of biomass, cells and colonies of 32 microorganism species, Heliyon, 5 (2019), 6, e01950. doi.org/10.1016/j.heliyon.2019.e01950
  96. Popovic, M.E., et al., Upcoming epidemic storm: Empirical formulas, biosynthesis reactions, thermodynamic properties and driving forces of multiplication of the omicron XBB. 1.9. 1, XBF and XBB. 1.16 (Arcturus) variants of SARS-CoV-2, Microbial Risk Analysis, 25 (2023), 100273. doi.org/10.1016/j.mran.2023.100273
  97. Popovic, M., et al., Ghosts of the past: Elemental composition, biosynthesis reactions and thermodynamic properties of Zeta P.2, Eta B.1.525, Theta P.3, Kappa B.1.617.1, Iota B.1.526, Lambda C.37 and Mu B.1.621 variants of SARS-CoV-2, Microbial risk analysis, 24 (2023), 100263. doi.org/10.1016/j.mran.2023.100263
  98. Popovic, M., et al., COVID infection in 4 steps: Thermodynamic considerations reveal how viral mucosal diffusion, target receptor affinity and furin cleavage act in concert to drive the nature and degree of infection in human COVID-19 disease, Heliyon, 9 (2023), 6, e17174. doi.org/10.1016/j.heliyon.2023.e17174
  99. Popovic, M., et al., Elemental composition, heat capacity from 2 to 300 K and derived thermodynamic functions of 5 microorganism species, Journal of biotechnology, 331 (2021), 99-107. doi.org/10.1016/j.jbiotec.2021.03.006
  100. Popovic, M., Minceva, M., Standard Thermodynamic Properties, Biosynthesis Rates, and the Driving Force of Growth of Five Agricultural Plants, Frontiers in plant science, 12 (2021), 671868. doi.org/10.3389/fpls.2021.671868
  101. Popovic, M. E., Minceva, M. Thermodynamic properties of human tissues, Thermal Science, 24 (2020), 6B, 4115-4133. doi.org/10.2298/TSCI200109151P
  102. Popovic, M., SARS-CoV-2 strain wars continues: Chemical and thermodynamic characterization of live matter and biosynthesis of Omicron BN.1, CH.1.1 and XBC variants, Microbial Risk Analysis, 24 (2023), 100260. doi.org/10.1016/j.mran.2023.100260
  103. Popovic, M., The SARS-CoV-2 Hydra, a monster from the 21st century: Thermodynamics of the BA.5.2 and BF.7 variants, Microbial Risk Analysis, (2023), 100249. doi.org/10.1016/j.mran.2023.100249
  104. Popovic, M., Thermodynamics of Bacteria-Phage Interactions: T4 and Lambda Bacteriophages, and E. Coli Can Coexist in Natural Ecosystems due to the Ratio of their Gibbs Energies of Biosynthesis, Thermal Science, 27 (2023), 1, 411-431. doi.org/10.2298/TSCI2301411P
  105. Degueldre, C., Single virus inductively coupled plasma mass spectroscopy analysis: A comprehensive study, Talanta, 228 (2021), 122211. doi.org/10.1016/j.talanta.2021.122211
  106. Şimşek, B., et al., How much energy is stored in SARS‐CoV‐2 and its structural elements?, Energy Storage, 4 (2021), 2, e298. doi.org/10.1002/est2.298
  107. Yilmaz, B., et al., Energetic and exergetic costs of COVID-19 infection on the body of a patient. International Journal of Exergy, 32 (2020), 3, 314-327. doi.org/10.1504/IJEX.2020.108602
  108. Srivastava, S., et al., Nutritional quality of leaves of some genotypes of mulberry (Morus alba), International journal of food sciences and nutrition, 57 (2006), 5-6, 305-313. doi.org/10.1080/09637480600801837
  109. Wang, Zm., et al., Five-Level Model: Reconstruction of Body Weight at Atomic, Molecular, Cellular, and Tissue-System Levels from Neutron Activation Analysis, in: Human Body Composition. Basic Life Sciences, vol 60. (Eds: K.J. Ellis and J.D. Eastman), Springer, Boston, MA, 1993, pp. 125-128. doi.org/10.1007/978-1-4899-1268-8_28
  110. Balmer, R.T. Modern Engineering Thermodynamics, Academic Press, Cambridge, MA, 2010. doi.org/10.1016/C2009-0-20199-1
  111. Konala, N., et al., The effect of bovine milk on the growth of Bombyx mori, Journal of insect science, 13 (2013), 1, 98. doi.org/10.1673/031.013.9801
  112. Makarieva, A. M., et al., Mean mass-specific metabolic rates are strikingly similar across life's major domains: Evidence for life's metabolic optimum, Proceedings of the National Academy of Sciences of the United States of America, 105 (2008), 44, 16994-16999. doi.org/10.1073/pnas.0802148105
  113. Popovic, M., Atom counting method for determining elemental composition of viruses and its applications in biothermodynamics and environmental science, Computational biology and chemistry, 96 (2022), 107621. doi.org/10.1016/j.compbiolchem.2022.107621
  114. Patel, S.A., Erickson, L.E., Estimation of heats of combustion of biomass from elemental analysis using available electron concepts, Biotechnology and Bioengineering, 23 (1981), 2051-2067. doi.org/10.1002/bit.260230910
  115. Hurst, J.E., Harrison, B.K., Estimation of liquid and solid heat capacities using a modified Kopp's rule, Chemical Engineering Communications, 112 (1992), 1, 21-30. doi.org/10.1080/00986449208935989
  116. Ozilgen, M., Sorgüven, E., Biothermodynamics: Principles and Applications, CRC Press, Boca Raton, FL, 2017. doi.org/10.1201/9781315374147
  117. Atkins, P. W., de Paula, J., Physical Chemistry for the Life Sciences (2nd edition), W. H. Freeman and Company, London, UK, 2011. ISBN-13: 978-1429231145
  118. Atkins, P.W., de Paula, J., Physical Chemistry: Thermodynamics, Structure, and Change, 10th Edition. W. H. Freeman and Company, London, UK, 2014. ISBN-13: 978-1429290197
  119. Berg, J.M., et al., Biochemistry. 5th ed. Freeman, New York, NY, 2002. ISBN-13: 978-0716746843
  120. Riedel, S., et al., Jawetz, Melnick & Adelbergs Medical Microbiology, 28th ed., McGraw-Hill Education, New York, NY, 2019. ISBN13: 9781260012026
  121. Privalov, P. L., Microcalorimetry of macromolecules: the physical basis of biological structures, John Wiley & Sons, Hoboken, NJ, 2012. ISBN: 978-1-118-10451-4
  122. Sarge, S. M., et al., Calorimetry: fundamentals, instrumentation and applications, John Wiley & Sons, Hoboken, NJ, 2014. ISBN: 978-3-527-32761-4
  123. Demirel, Y., Nonequilibrium Thermodynamics: Transport and Rate Processes in Physical, Chemical and Biological Systems, 3rd ed., Elsevier, Amsterdam, Netherlands, 2014. ISBN: 9780444595812
  124. Duboc, P., et al., Quantitative calorimetry and biochemical engineering, in: Handbook of thermal analysis and calorimetry: From Macromolecules to Man (Ed. R.B. Kemp), Elsevier, Amsterdam, Netherlands, 1999, pp. 267-365. ISBN: 978-0-444-82088-4
  125. Manahan, S., Manahan, S.E., Environmental Chemistry, 9th ed., CRC Press, Boca Raton, FL, 2009. ISBN-13: 978-1420059205
  126. Popovic, M., Why doesn't Ebola virus cause pandemics like SARS-CoV-2?. Microbial risk analysis, 22 (2022), 100236. doi.org/10.1016/j.mran.2022.100236
  127. Popovic, M., Beyond COVID-19: Do biothermodynamic properties allow predicting the future evolution of SARS-CoV-2 variants?, Microbial risk analysis, 22 (2022), 100232. doi.org/10.1016/j.mran.2022.100232
  128. Popovic, M., Strain wars 3: Differences in infectivity and pathogenicity between Delta and Omicron strains of SARS-CoV-2 can be explained by thermodynamic and kinetic parameters of binding and growth, Microbial risk analysis, 22 (2022), 100217. doi.org/10.1016/j.mran.2022.100217
  129. Liu, J. S., et al., A comparison of various Gibbs energy dissipation correlations for predicting microbial growth yields, Thermochimica Acta, 458 (2007), 1-2, 38-46. doi.org/10.1016/j.tca.2007.01.016

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence