THERMAL SCIENCE

International Scientific Journal

External Links

DESIGN STUDY ON THE INTEGRATED UTILIZATION SYSTEM OF MEDIUM TEMPERATURE WASTE HEAT AND LNG VAPORIZATION COLD ENERGY FOR 200000 DWT LNG-POWERED VESSELS

ABSTRACT
The study object for this work is a 215000 ton very large crude carrier – liquefied natural gas – powered vessel, intending to integrate the use of medium temperature flue gas waste heat from the exhaust turbine and cold energy from liquefied natural gas vaporization. It proposes a Rankine cycle power generating system with a two stage booster and three stage lateral nesting following the principle of “temperature matching, stepped utilization”, taking into account real demands and circumstances of the vessel. The study shows that in this tonnage vessel, through the design and optimization of the stepped utilization scheme, the cold energy released during the vaporization of liquefied natural gas fuel from the ME-GI host machine and the medium temperature waste heat from the exhaust turbine can be fully utilized, and the system structure is tight and simple. After the non-azeotropic mixed working media was optimized and the operational parameters were optimized using genetic algorithm, the system designed in this paper can reach 54.61% exergy efficiency and 187.83 kW net output of power generation. The annual income of the final designed system can reach CNY 1, 133, 240. The capital recovery cycle is expected to be 5.06 years if the system is put into operation.
KEYWORDS
PAPER SUBMITTED: 2022-03-26
PAPER REVISED: 2022-06-05
PAPER ACCEPTED: 2022-06-10
PUBLISHED ONLINE: 2022-10-08
DOI REFERENCE: https://doi.org/10.2298/TSCI220326146Y
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2023, VOLUME 27, ISSUE Issue 2, PAGES [1289 - 1299]
REFERENCES
  1. Xu, L., Lin, G., Simulation and optimization of liquefied natural gas cold energy power generation system on floating storage and regasification unit. Thermal Science, 25(2021), pp. 4707-4719. DOI:10.2298/TSCI200404205X
  2. He, T., et al., LNG cold energy utilization: Prospects and challenges, Energy, 170(2019), pp. 557- 568. DOI:10.1016/j.energy.2018.12.170
  3. Kanbur, B. B., et al., Cold utilization systems of LNG: A review, Renewable and sustainable energy reviews, 79(2017), pp. 1171-1188. DOI:10.1016/j.rser.2017.05.161
  4. He, T., et al., A novel conceptual design of hydrate based desalination (HyDesal) process by utilizing LNG cold energy, Applied Energy, 222(2018), pp. 13-24. DOI:10.1016/j.apenergy.2018.04.006
  5. Lin, W., et al., Seawater freeze desalination prototype system utilizing LNG cold energy, International journal of hydrogen energy, 42(2017), pp. 18691-18698. DOI:10.1016/j.ijhydene.2017.04.176
  6. Chong, Z. R., et al., Economic evaluation of energy efficient hydrate based desalination utilizing cold energy from liquefied natural gas (LNG), Desalination, 463(2019), pp. 69-80. DOI:10.1016/j.desal.2019.04.015
  7. Ning, J., et al., Performance study of supplying cooling load and output power combined cycle using the cold energy of the small scale LNG, Energy, 172(2019), pp. 36-44. DOI:10.1016/j.energy.2019.01.094
  8. Li, B., et al., Design and simulation optimization of cold storage and air conditioning system in LNG powered carrier by using cold energy of LNG based on HYSYS, Proceedings, Earth and Environmental Science 2020, Xiamen, 2020, 467(1): 012019
  9. Peng, X., et al., Liquid Air Energy Storage with LNG cold recovery for air liquefaction improvement, Energy Procedia, 158(2019), pp. 4759-4764. DOI:10.1016/j.egypro.2019.01.724
  10. Ouyang, T., et al., A new scheme for large marine vessels LNG cold energy utilization from thermodynamic and thermoeconomic viewpoints, Energy Conversion and Management, 229(2021), pp. 113770. DOI:10.1016/j.enconman.2020.113770
  11. Deng, D., et al., Theoretical and experimental validation study on automotive air-conditioning based on heat pipe and LNG cold energy for LNG-fueled heavy vehicles, Heat and Mass Transfer, 535(2017), pp. 2551-2558. DOI:10.1007/s00231--017--1990--y
  12. Ma, G., et al., Multi-stage Rankine cycle (MSRC) model for LNG cold-energy power generation system, Energy, 165(2018), pp. 673-688. DOI:10.1016/j.energy.2018.09.203
  13. Sun, Z., et al., Thermodynamic improvements of LNG cold exergy power generation system by using supercritical ORC with unconventional condenser, Energy Conversion and Management, 223(2020), pp. 113263. DOI:10.1016/j.enconman.2020.113263
  14. Li, C., et al., Zeng Z. Performance analysis of an improved power generation system utilizing the cold energy of LNG and solar energy, Applied Thermal Engineering, 159(2019), pp. 113937. DOI:10.1016/j.applthermaleng.2019.113937
  15. Bao, J., et al., Comparative study of liquefied natural gas (LNG) cold energy power generation systems in series and paralle, Energy Conversion and Management, 184(2019), pp. 107-126. DOI:10.1016/j.enconman.2019.01.040
  16. Li, B., et al., Comprehensive development and utilization of LNG power ship fuel cold energy, China navigation, 38(2015), pp. 108-111 + 120
  17. Li, B., et al., LNG carrier cold energy power generation technology, China navigation, 39(2016), pp. 91-98
  18. Ma, Z., et al., Design and analysis of marine air conditioning system using LNG cold energy, Journal of Jiangsu University of Science and Technology (NATURAL SCIENCE EDITION), 30(2016), pp.237-241 + 253
  19. Li, B., et al., Study on comprehensive utilization of fuel cold energy of LNG power ship, Journal of Dalian Maritime University, 43(2017), pp. 45-52
  20. Yao, S., et al., Design and optimization analysis of energy utilization system of 25000 t LNG fuel powered chemical ship, Journal of chemical industry, 69(2018), pp. 330-340
  21. Yao, S., et al., Simulation analysis and optimization of energy utilization system of 16300 t LNG fuel powered chemical ship, Ship Engineering, 41(2019), pp. 114-118
  22. Han, F., et al., Sunden B. Energy analysis and multi-objective optimization of waste heat and cold energy recovery process in LNG-fueled vessels based on a triple organic Rankine cycle, Energy Conversion and Management, 195(2019), pp. 561-572. DOI:10.1016/j.enconman.2019.05.040
  23. Yang, H., et al., Study on Optimization of LNG cold energy cascade utilization system, Renewable energy, 29(2011), pp. 72-75
  24. Jin, T., et al., New air separation process using LNG cold energy and its performance, Journal of Zhejiang University: Engineering Edition, 41(2017), pp. 836-839
  25. Shen, W., Discussion on VLCC design, Marine engineering, (2005), pp. 25-29
  26. Shin, Y., et al., Development of NOx reduction system utilizing Artificial Neural Network (ANN) and Genetic Algorithm (GA), Journal of Cleaner Production, 232(2019), pp. 1418-1429. DOI:10.1016/j.jclepro.2019.05.276
  27. Bao, J., et al., Effects of stage number of condensing process on the power generation systems for LNG cold energy recovery, Applied Thermal Engineering, 126(2017), pp. 566-582. DOI:10.1016/j.applthermaleng.2017.07.144
  28. Mosaffa, A. H., Farshi L G. Exergoeconomic and environmental analyses of an air conditioning system using thermal energy storage, Applied Energy, 162(2016), pp. 515-526. DOI:10.1016/j.apenergy.2015.10.122
  29. Choi, I. H., et al., Analysis and optimization of cascade Rankine cycle for liquefied natural gas cold energy recovery, Energy, 61(2013), pp. 179-195. DOI:10.1016/j.energy.2013.08.047

2025 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence