THERMAL SCIENCE

International Scientific Journal

STRUCTURE, THERMAL AND PHYSIC-CHEMICAL PROPERTIES OF SOME CHALCOGENIDE ALLOYS

ABSTRACT
Bulk products of crystalline Bi2Se3-xTex alloys (x =0.0, 0.1, 0.3, 0.5) were prepared using simple melting synthesis. Crystalline features, microstructure, and surface morphologies of the synthesized samples were examined via X-ray diffraction, scanning electron microscope, and energy dispersive X-ray spectrometer. Elemental distribution was studied by energy dispersive analysis of X-ray spectroscopy. Polycrystalline of rhombohedral crystal structure was observed for the concerned samples. Perfect crystallinity and micro-scalability of the prepared were also reflected by the physic-chemical properties of each sample. Thermal behavior was studied throughout differential scanning calorimetry and thermo-gravimetric analysis showing that the samples are of high stability over high temperature range. Physic-chemical properties were determined in terms of experimental density. These properties were compactness value, molar volume and the percentage of free volume. Density of Bi2Se3 alloy was obtained at 7.37 gm/cm3. The Te doping enhanced the density of the Bi2Se3-xTex system. The most Te doped alloy showed density of 9.018 gm/cm3. All other physic-chemical properties showed strong dependence on the Tea amounts in the system.
KEYWORDS
PAPER SUBMITTED: 2022-10-01
PAPER REVISED: 2022-11-10
PAPER ACCEPTED: 2022-11-21
PUBLISHED ONLINE: 2023-01-07
DOI REFERENCE: https://doi.org/10.2298/TSCI221001195A
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2023, VOLUME 27, ISSUE Issue 1, PAGES [397 - 404]
REFERENCES
  1. A. M. Adam, E. Lilov, P. Petkov, Materials Science in Semiconductor Processing 52 (2016), p. 1-7.
  2. A. M. Adam, E. M. M. Ibrahim, Anshu Panbude, K. Jayabal, P. Veluswamy, Diab, A.K. Journal of Alloys and Compounds 872 (2021), p. 159630.
  3. S. M. Elahi, A. Taghizadeh, A. Hadizadeh, L. Dejam. Int. J. Thin Fil. Sci. Tec. 3 (2014), p. 13-18.
  4. E. M. M. Ibrahim, A. M. A. Hakeem, A. M. Adam, E.K. Shokr, Physica Scripta 90 (4) (2015), p. 045802.
  5. A. M. Adam, et al., Journal of Physics and Chemistry of Solids 138 (2020), p. 109262.
  6. O. Meroz, D. Ben-Ayoun, O. Beeri, Y. Gelbstein, Journal of Alloys and Compounds, 679 (2016), 196-201.
  7. A. M. Adam et al., Materials Science in Semiconductor Processing 143, (2022), p. 106557.
  8. T. E. Manjulavalli, T. Balasubramanian, D. Nataraj, Chalcogenide Lett. 5 (11) (2008), p. 297-302.
  9. D. Kraemer, et al., Nat. Mater. 10 (2011), p. 532.
  10. A. M. Adam, A. K. Diab, M. Ataalla, Maged F. Alotaibi, Abdulaziz N. Alharbi, E.M. Elsehly, Journal of Alloys and Compounds, 898 (2022), p. 162888.
  11. A. El-Khouly, et al., Journal of Alloys and Compounds, 890 (2022), p. 161838.
  12. A. El-Khouly, et al., Journal of Alloys and Compounds, 886 (2021), p. 161308.
  13. A. M. Adam, A. El-Khouly, A.K. Diab, Journal of Alloys and Compounds 851 (2021) 156887.
  14. A. M. Adam, E. M. M. Ibrahim L. V. Panina, P. Petkov, Nanoscale and Microscale Thermophysical Engineering, 22 (2018), p. 21-38.
  15. E. M. M. Ibrahim, E. K. Shokr, A. M. A. Hakeem, A. M. Adam, Journal of Experimental and Theoretical Physics, (2013), p. 166-172.
  16. A. M. Adam, E. Lilov, P. Petkov, Superlattices and Microstructures, 101 (2017), p. 609-624.
  17. A. M. Adam, et al., Nanoscale and Microscale Thermophysical Engineering, 22 (2018), p. 21-38.
  18. T. Petkova, P. Petkov, S. Vassilev, Y. Nedeva, Surf. Interface Anal. 36 (2004), p. 880.
  19. F. El-Diasty, F. A. Abdel Wahab, M. Abdel-Baki, J. Appl. Phys. 100 (2006), p. 093511.

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence