THERMAL SCIENCE

International Scientific Journal

THERMOELECTRIC PERFORMANCE OF FE2ALV/CNT-BASED ALLOYS

ABSTRACT
Heusler-type Fe2AlVxTi1-x alloys offer an alternative solution for the generation of thermoelectric power near room temperature. In the current research, thermoelectric properties of the p-type Fe2AlV0.9Ti0.1 and Fe2AlV0.9Ti0.1/CNT alloys, prepared by SPS, were studied. Carbon nanotubes (CNT) were used as dopants to improve the seebeck coefficient and electrical conductivity. Upon doping with CNT, the thermal conductivity was significantly reduced, meanwhile, the value of the power factor increased from 0.45 to 1.55 mW/mK2 at around 330 K. The effect of CNT inclusions on the thermoelectric parameters of Fe2AlVxTi 1-x compounds was systematically studied. When compared to Fe2AlV0.9Ti0.1, which had a figure of merit of just 0.02 at 330 K, the CNT-containing samples showed a significantly improved figure of merit up to 0.07. We offer a novel technique to improve the performance of Fe2AlV alloys.
KEYWORDS
PAPER SUBMITTED: 2022-10-05
PAPER REVISED: 2022-11-07
PAPER ACCEPTED: 2022-11-23
PUBLISHED ONLINE: 2023-01-07
DOI REFERENCE: https://doi.org/10.2298/TSCI221005194E
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2023, VOLUME 27, ISSUE Issue 1, PAGES [389 - 396]
REFERENCES
  1. A.M. Adam, E.M. Elsehly, M. Ataalla, A. El-Khouly, Ayman Nafady, A.K. Diab, Preparation and thermoelectric power properties of highly doped p-type Sb2Te3 thin films, Physica E: Low-dimensional Systems and Nanostructures, 127 (2021), p. 114505.
  2. A.M. Adam, E.M.M. Ibrahim, A. Panbude, K. Jayabal, P. Veluswamy, A.K. Diab, Thermoelectric power properties of Ge doped PbTe alloys, Journal of Alloys and Compounds, 872 (2021), p. 159630.
  3. Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, G.J. Snyder. Convergence of electronic bands for high performance bulk thermoelectric, Nature. 473 (2011), p. 66-69.
  4. H. J. Goldsmid, Introduction to Thermoelectricity. 2nd ed. Volume 121 Springer; Berlin/Heidelberg, Germany: 2016.
  5. H. Matsuura, Y. Nishino, U. Mizutani, S. Asano, Doping effects on thermoelectric properties of the pseudogap Fe2VAl system, Journal of the Japan Institute of Metals and Materials, 66 (2002), p. 767-771.
  6. M. Mikami, K. Kobayashi, S. Tanaka, Power generation performance of thermoelectric module consisting of Sb-doped heusler Fe2VAl sintered alloy, Materials Transactions, 52 (2011), p. 1546-1548.
  7. Alleno E. Review of the Thermoelectric Properties in Nanostructured Fe2VAl. Metals. 8(11) (2018), p. 864.
  8. M. Mikami, A. Matsumoto, K. Kobayashi,Synthesis and thermoelectric properties of microstructural Heusler Fe2VAl alloy, Journal of Alloys and Compounds, 461 (2008), p. 0925-8388.
  9. R. Liu, et al., Low thermal conductivity and enhanced thermoelectric performance of Gd-filled skutterudites, Journal of Applied Physics, 109 (2011), p. 023719.
  10. V.N. Popov, Carbon nanotubes: properties and application, Materials Science and Engineering: R: Reports, 43 (2004), p. 61-102.
  11. N.T. Hung, A.R.T. Nugraha, R. Saito. Thermoelectric properties of carbon nanotubes. Energies. 12(23) (2019), p. 4561.
  12. Y. Zhang, X. L. Wang, W. K. Yeoh, R. K. Zheng, C. Zhang, Publisher's Note: Electrical and thermoelectric properties of single-wall carbon nanotube doped Bi2Te3, Appl. Phys. Lett. 102 (2013), p. 019902.
  13. B. Trawiński et al., Structure and thermoelectric properties of bismuth telluride-Carbon composites, Materials Research Bulletin, 99 (2018), p. 10-17.
  14. G. Nie et al., High performance thermoelectric module through isotype bulk heterojunction engineering of skutterudite materials, Nano Energy, 66 (2019), p. 104193.
  15. J. Fan, X. Huang, F. Liu, L. Deng, G. Chen, Feasibility of using chemically exfoliated SnSe nanobelts in constructing flexible SWCNTs-based composite films for high-performance thermoelectric applications, Composites Communications, 24 (2021), p. 100612.
  16. K. Yusupov, A. Vomiero, Polymer-Based Low-Temperature Thermoelectric Composites. Adv. Funct. Mater. 30 (2020), p. 2002015.
  17. E. M. Elsehly, et al., Ozone functionalized CNT-based filters for high removal efficiency of benzene from aqueous solutions, Water Process Eng. 25 (2018), p. 81-87.
  18. V.B. Osvenskiy, et al., Journal of Alloys and Compounds, 586 (2014), p. S413.
  19. Y. Nishino, Y. Tamada, Doping effects on thermoelectric properties of the off-stoichiometric Heusler compounds Fe2−xV1+xAl", Journal of Applied Physics, 115 (2014), p. 123707.
  20. D.A. Porter, K.E. Easterling, Phase Transformations in Metals and Alloys (Revised Reprint); CRC Press: Boca Raton, 2009.
  21. E. M. Elsehly, N. G. Chechenin, A. V. Makunin, H. A. Motaweh, Mater. Res. Express 3 (2016), p. 105013.
  22. Valentin N Popov, Carbon nanotubes: properties and application, Materials Science and Engineering: R: Reports, 43 (2004), p. 61-102
  23. T. Hung, N.; R. T. Nugraha, A.; Saito, R. Thermoelectric Properties of Carbon Nanotubes. Energies 12, (2019), p. 4561.
  24. D.-H. Park, M.-Y. Kim, T.-S. Oh, Thermoelectric energy-conversion characteristics of n-type Bi2(Te, Se)3 nanocomposites processed with carbon nanotube dispersion. Curr. Appl. Phys. 11(4) (2011), p. S41-S45.
  25. E.M. Elsehly, E.M.M. Ibrahim, Medhat A. El-Hadek, A. El-Khouly, V. Khovaylo, Z.M. Elqahtani, N.G. Chechenin, A.M. Adam, Annealing effect on the thermoelectric properties of multiwall carbon nanotubes, Physica E: Low-dimensional Systems and Nanostructures, 146 (2023), p. 115566.
  26. Y. Zhang, X. L. Wang, W. K. Yeoh, R. K. Zheng, C. Zhang, Electrical and thermoelectric properties of single-wall carbon nanotube doped Bi2Te3, Appl. Phys. Lett., 101 (2012), p. 031909.
  27. F. Ren, H. Wang, P.A. Menchhofer, J.O. Kiggans, Thermoelectric and mechanical properties of multi-walled carbon nanotube doped Bi0.4Sb1.6Te3 thermoelectric material, Appl. Phys. Lett., 103 (2013),p. 221907.
  28. H. Bark, J.-S. Kim, H. Kim, J.-H. Yim, H. Lee, Effect of multiwalled carbon nanotubes on the thermoelectric properties of a bismuth telluride matrix, Current Applied Physics, 13 (2013), p. S111.
  29. A.M. Adam, A.K. Diab, M. Ataalla, Maged F. Alotaibi, Abdulaziz N. Alharbi, E.M. Elsehly, Optimized thermoelectric performance in thin (Bi2Se3)1−x(Bi2Te3)x alloyed films, Journal of Alloys and Compounds, 898 (2022), p. 162888.
  30. A. El-Khouly, et al., Transport and thermoelectric properties of Nb-doped FeV0.64Hf0.16Ti0.2Sb half-Heusler alloys synthesized by two ball milling regimes, Journal of Alloys and Compounds, 890 (2022), p. 161838.
  31. A. El-Khouly, A. Novitskii, I. Serhiienko, A. Kalugina, A. Sedegov, D. Karpenkov, A. Voronin, V. Khovaylo, A.M. Adam, Optimizing the thermoelectric performance of FeVSb half-Heusler compound via Hf-Ti double doping, Journal of Power Sources, 477, (2020), p. 228768.

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence