THERMAL SCIENCE

International Scientific Journal

Authors of this Paper

External Links

EXP-FUCTION METHOD FOR EXACT SOLUTIONS OF SOME NON-LINEAR PARTIAL DIFFERENTIAL EQUATIONS

ABSTRACT
In this study, we have obtained the exact solutions of (2+1) and (3+1)-D constant coefficient KdV equations by applying the exponential function method. These exact solutions we find are in the form of an exponential function. In addition, we have seen that these solutions provide the equations by using MATHEMATICA 11.3 program. Apart from that, we have shown the graphics performance of some of the solutions found.
KEYWORDS
PAPER SUBMITTED: 2022-08-18
PAPER REVISED: 2022-09-20
PAPER ACCEPTED: 2022-10-01
PUBLISHED ONLINE: 2023-01-21
DOI REFERENCE: https://doi.org/10.2298/TSCI22S1139I
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2022, VOLUME 26, ISSUE Special issue 1, PAGES [139 - 147]
REFERENCES
  1. Hu, X. B., Ma, W. X. Application of Hirota's Bilinear Formalism to the Toeplitz L attice-some special soliton-like solutions, Phys. Let. A, 293 (2002), 3-4, pp. 161-165
  2. Shang, Y., Backlund transformation, Lax Pairs and Explicit Exact Solutions for the Shallow Water Waves Equation, Appl. Math. Comput., 187 (2007), 2, pp. 1286-1297
  3. Abourabia, A. M., El Horbaty, M. M. On Solitary Wave Solutions for the 2-D Non-Linear Modifi ed Kortweg-de Vries-Burger Equation, Chaos Soliton Fract., 29 (2006), 2, pp. 354-364
  4. Bock, T. L., Kruskal, M. D., A Two-Parameter Miura Transformation of the Benjamin-Ono Equation, Phys. Let. A, 74 (1979), 3-4, pp. 173-176
  5. Drazin, P. G., Jhonson, R. S., Solitons: An Introduction, Cambridge University Press, Cambridge, UK, 1989
  6. Matveev, V. B., Salle, M. A., Darboux Transformations and Solitons, Springer, Berlin, Germany, 1991
  7. Cariello, F., Tabor, M., Painlevé expansions for non-integrable evolution equations (in French), Physica D, 39 (1989), 1, pp. 77-94
  8. Fan, E., Two New Applications of the Homogeneous Balance Method, Phys. Let. A, 265 (2000), 5-6, pp. 353-357
  9. Clarkson, P. A., New Similarity Solutions for the Modified Boussinesq Equation, Journal Phys A-Math Gen., 22 (1989), 13, pp. 2355-2367
  10. Chuntao, Y., A Simple Transformation for Non-Linear Waves, Phys. Let. A, 224 (1996), 1-2, pp. 77-84
  11. Malfliet, W., Solitary Wave Solutions of Non-Linear Wave Equations, Am J. Phys., 60 (1992), 7, pp. 650-654
  12. Fan, E., Extended Tanh-Function Method and Its Applications to Non-Linear Equations, Phys. Let. A, 277 (2000), 4-5, pp. 212-218
  13. Elwakil, S. A., et al., Modified Extended Tanh-Function Method for Solving Non-Linear Partial Differential Equations, Phys. Let. A, 299 (2002), 2-3, pp. 179-188
  14. Chen, H., Zhang, H., New Multiple Soliton Solutions to the General Burgers-Fisher Equation and the Kuramoto-Sivashinsky Equation, Chaos Soliton Fract., 19 (2004), 1, pp. 71-76
  15. Fu, Z., et al., New Jacobi Elliptic Function Expansion and New Periodic Solutions of Non-Linear Wave Equations, Phys. Let. A, 290 (2001), 1-2, pp. 72-76
  16. Shen S., Pan, Z., A Note on the Jacobi Elliptic Function Expansion Method, Phys. Let. A, 308 (2003), 2-3, pp. 143-148
  17. Ulutas, E., et al., Exact Solutions of Stochastic KdV Equation with Conformable Derivatives in white Noise Environment, Thermal Science, 25 (2021), Special Issue 2, pp. S143-S149
  18. Yildirim, E. N., et al., Reproducing Kernel Functions and Homogenizing Transforms, Thermal Science, 25 (2021), Special Issue 2, pp. S9-S18
  19. Abdelrahman, M. A. E., et al., Exact Solutions of the Cubic Boussinesq and the Coupled Higgs Systems, Thermal Science, 24 (2020), Suppl. 1, pp. S333-S342
  20. Menni, Y., et al., Heat and Mass Transfer of Oils in Baffled and Finned Ducts, Thermal Science, 24 (2021), Suppl. 1, pp. S267-276
  21. Wazwaz, A. M., Two New Painleve-integrable (2+1) and (3+1)-D KdV Equations with Constant and Time-Dependent Coefficients, Nuclear Phys. B, 954 (2020), 115009

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence