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In this study, we have obtained the exact solutions of (2+1) and (3+1)-D constant
coefficient KdV equations by applying the exponential function method. These ex-
act solutions we find are in the form of an exponential function. In addition, we
have seen that these solutions provide the equations by using MATHEMATICA
11.3 program. Apart from that, we have shown the graphics performance of some
of the solutions found.
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Introduction

Non-linear PDE have an important place in applied mathematics and physics. These
equations are mathematical models of the physical phenomenon that occurs in engineering,
chemistry, biology, mechanics, and physics. It is very important to have knowledge about the
solutions of mathematical models. Solving these equations is necessary to better understand the
mechanisms of mathematical models. Therefore, it has an important role in obtaining analytical
solutions of non-linear PDE in applied sciences. Recently, solving these equations has become
attractive. For this reason, some methods have been developed by scientists. Some of these are:
Hirota method [1], Backlund transform [2], Cole-hopf transformation method [3], Generalized
Miura Transform [4], inverse scattering method [5], Darboux transform [6], Painleve method
[7], homogeneous balance method [8], similarity reduction method [9], and sine cosine method
[10].

Besides these methods, there are many methods based on the use of an auxiliary equa-
tion. First, non-linear PDE are converted into non-linear ODE using these methods. Secondly,
the obtained non-linear ODE are solved with the help of the auxiliary equation.

These methods can be listed tanh function method [11], extended tanh function meth-
od [12], modified extended tanh method [13], improved tanh function method [14], Jacobi
elliptic function method [15], and the others [16-20].

In this study, we have obtained the exact solutions of these equations by applying the
exponential function method to (2+1) and (3+1)-D constant coefficient KdV equations [21].

* Author’s e-mail: unalic@firat.edu.tr
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Analysis of expansional function method
A two-variable PDE is given:
Q(u,ut,ux,um,...)=0 (1)
Let us apply the transformation (x, #) = u(&), £ = kx + wt to this equation, where k and

w are constants. As a result of the application of this transformation, eq. (1) transforms into an
ordinary differential equation dependent on u(¢&):

Q'(u',u",u"’,...)=0 (2)
We are looking for the solution of this eq. (2):
d
Z a,exp(né)
u(§)="T—— (3)
z bmexp(mc_f)
m==p

where ¢, d, p, and ¢ are positive integers are @, and b,, are the unknown constants. We assume
that the solution of eq. (2) is:

acexp(c§)+---+a_dexp(—d§)

(£)= @
a,exp(pé)+--+a_exp(—gé)

where ¢, d, p, and ¢q are positive integers, and these numbers are found by balancing the highest

order derivative term in eq. (2) with the highest order non-linear term. If the solution of (4) is

replaced in eq. (2), an algebraic equation system for exp(¢) is obtained. In this equation system
obtained, all the coefficients of exp(¢) are equal to zero and the constants a, and b,, are found.

Examples
Example
Let us first consider the (2+1)-D constant coefficient KAV equation [21]:
Uy, Uy, oy, o, + Pu +yu,, =0 (5)

Applying the transformation of (x, y, t) = u(¢), £ = (x — gy — kt) the equation becomes
a common differential equation:

ol —ou' ~2acu'u" + Su"+yo*u" =0 (6)
Once equation (6) is integrated once, we get common differential equation:
(0k+[)’+}/0'2)u'—a0'(u')2—O'u'"=0 (7)
When " is balanced by (') in eq. (7):
clexp[(c+7p)§]+--- B c3exp[(20+6p)§]+---

czexp[8p§]+~- c4exp[8p§]+...

where p = ¢ is obtained. Similarly, when #” and (u')* are balanced to determine the values of ¢
and d:

ot d, exp[—(d+7q)§] edy exp[—(2d+6q)§]

cetd, exp[—8q§] etdy exp[—8q§]
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where g = d is obtained. Here, if we take p =c =1 and ¢ = d = 1, the solution (4) is obtained:
a,exp (é) +ay +a_exp (—5)
u(¢)= . (8)
exp(§)+b0 +b71exp( f)

If this solution is written in eq. (7), an algebraic equation system is formed for the
coefficients a, a,, a_,, by, and b_; as follows:

1
T (~4aca’, —4pa_b ,-320a b, —4koa b, —4yc’a b, +2acaib , +

+8aca_ab | +4fab?, +320a,b* + dkoab?, +4yctab?, —4acalb?, -
—2aoa_jayh, - 2acayab_ by —4pa by +4ca by —4koa bi —4ycta_ by +

+2aca_ab} +4fab by —4cab \bi +4koab by +4yctab b)) =0
1
F(—ﬁao +oay —koay —yotay + fap, — oab, +koab, + yotab, ) =0
1 Bagh’, —oah’, + koayh?, + yotagh’, — pa_ b b, +
T\ +oa_ b2 by —koa bk, —yo a b’ by = 0)
%(—Zﬂa,l +80a | —2koa_ , —2yc’a  —aocal +2pab , —8cab_ , +2kcab. | +

+2y0 b, — 2 Bagh, —4cagh, —2kaaghy — 270 agh, + 2acagab, + 2 fab +4ca by +

+2kaa1b02 + Zyazalbg - 010'012173) =0

%(—2 Pa_\b* +8ca_b*, —2koa b? —2yc’a b* —acalb® +2pab’, —8cab’, +

+2koab’, +2yctab’, + 2aca_ayh by +2fagh’ by + 4oayh? by + 2koayh? by +

+2y0ayh’ by —aca’ bt —2pa_b_ b} —4ca_b b —2koa_b_ b} —2ycta b b3)=0
%(4a0a_1a0b_] + ﬂaob_z1 + 230'aob3l + kaaobfl + yazaobfl —4050'a0a1b31 - 4a0azlbo -

—6pa_b by —18ca_b_b, —6koa_b_ by —6yc’a_b_ b, +4aca_ab_ b, +5pab* by —
—5cayb? by + 5koab? by + 5y ab’ b, + fagh_\bi — cagh b} +koayh b} +yolagh by —

- Ba_ B} +ca b} —koa by —yota b)) =0

1
F(—4a0'a_la0 — Bagh_, —23cayh_, —koayh_, — yolagh_, +4acayab_, —5pa_ by +50a_ b, —

—5koa by —5ycta by +4aca_ab, +6fab b, +18cab b, + 6koab by +6yc ab b, —

—4acaib by - Bayh} + cayhi —koayh; — yotaghy + faby —cab; +koab; +yotaby) =0

Here T = [exp(&) + by + b_1exp(—<)]. When this system is solved, the coefficients ay,
ai, a_y, by, b_;, and k are found:
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_ 2
1 a#0, q =£,a,1 =0,b_, =%(—a2a§+6aaob0), o#0, k=M, L#0
o

o
. 12 ~B+40—yo’
(11) 0!750, al =—, ao ZO’a—l :O,bo :0’ O'b_l iO, k:M’ ﬂ¢0
a o
ay =0, by =0, al(—l2+aa1)¢0,b_l =&, a(a_l—alb_l);to,
-12+aaq
(ii1) )
Pk it L T
o
_ _ 2
(iv) %=o,%=01b=o,af:7%a¢po¢o,k=-ﬁiﬂli9—,ﬂ¢4¢0
6 _ 2
%zaawux%:iﬁ—ﬂﬁﬂqiab4=—%m4ﬁ¢a
v) “

_ _ 2
k=Bro=1 a0

If the coefficients (i)-(v) are written in their place in the solution (8), the solutions of
eq. (5) are obtained:
x+ﬁ+ty0'
36e ©
u (x,,1) = 5 , (see fig. 1)

X+——+tyo
ay +6€7 ab,

6e °  a-etq?

-20 -10 0 1‘0
(b)

Figure 1. (a) The 3-D surfaces of the aforementioned solution for f=4,y=1,6=3,a=2,
ay=1,by=2,y=1, (b) the 2-D surfaces of the aforementioned solution for f#=4,y=1,
c=3,a=2,a0=1,by=2,y=1,t=1,¢t=2,¢=3, and (c) the contour plot of the aforementioned
solution for f=4,y=1,6=3,a=2,ay=1,b,=2,y=1

12e*

2yo‘+t(8—ﬁ—270']
o
b—l

uy (x,y,1) = , (see fig. 2)

al e +e
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@ o o 5 0 (g

Figure 2. (a) The 3-D surfaces of the aforementioned solution for f=4,y=1,6=3,a=2,b,=1,
(b) the 2-D surfaces of the aforementioned solution for f=4,y=1,6=3,a=2,b,=1,y=1,
t=1,t=2,t=3, and (c) the contour plot of the aforementioned solution for f=4,y=1,6=3,
a=2,a,=1,by=2,y=1

2yo’+t[8—£—2yo’) )
e a_+e¢“a |[(-12+aa))
Us ()C, Y, t) = 20
2yo‘+t(8———2yo‘] )
e aa_+e** (-12+aaq))
1268t+2y0'a 6et+y0'a0
u4(x:y:t)=_ B s us(xa)’,t)= B
2[x+—+tyo‘) 8142 Xt—+tyo t+yo
-12e* ¢ +e"*%qa , 6e 7  —eaq
Example

Now let’s apply the exponential function method to the (3+1)-D constant coefficient
KdV equation [21]:

Uy, + Uy, T QU U U UL+ Buy + yuy, +6u,, =0 9)

Applying the transformation (x, y, z, t) = u(¢), = (x — gy + pz — kf) to eq. (9), a com-
mon differential equation is obtained:

ohu" - oul® —2aou'u"+ pu" + yo*u" - Sopu" = 0 (10)
If the integral of this common differential equation is taken once:
(O'k+ﬂ+y0'2—50'p)u'—a0'(u')2—cru”’=0 (11)
equation is obtained. When " is balanced by (#)* in eq. (11):
clexp[(c+7p)§]+--- ~ c3exp[(20+ 6p)§] oo
c,exp[8p&]+--- cyexp[8pE]+--

where p = ¢ is obtained. Similarly, when " and («')* are balanced to determine ¢ and d values:
<ot dyexp| —(d +7¢)&] B -+ dyexp| - (2d +64) & ]
-+ dyexp[-8¢¢£] -+ dexp[-8¢£]

where ¢ = d is obtained. Here, if we take p = ¢ =1 and ¢ = d = 1, the solution (4) is obtained in
the form of:
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u( ): alexp(§)+a0 +a_1exp(—§)
exp(&)+by +b_jexp(=¢£)

If the solution eq. (12) is substituted in the eq. (11), an algebraic equation system is
formed for the coefficients a ay, a1, a_,, by, and b_;:

(12)

1
?(—40501131 —4pa_b_, -32c0a_b_, —4koa_b_, +4dpoa_ib_, —47/0'2(1_117_1 +20(0'a§b_1 +
2 2 2 2 2 42 2;2
+8aca_jab_ +4pa,b”, +320ab”, +4koab”, —4dpoa,b’, +4yc ab’, —4aoca; b, —
—2aca_japhy —2acayab by —4fa b} +4ca_ b} —dkoa b} +4dpoa b} —4ycta b +

+2aca_ab +4fab \b; —4cab bi +4koab by —4dpoab_ bi +4yctab by ) =0

1
F(—ﬂao +oa, —koay + Spoay — yotay + faby —oab, + koab, — Spoab, + }/azalbo) =0
%(ﬂaobfl —oayh’, +koah®, - Spoayh®, + yola,h®, — Ba_ b by +ca_ b by —
—koa_b* b, + Spoa_b* b, — yaza,lb,zlbo) =0

%(—Zﬂa_l +8ca_ | —2koa_, +28pca_, —2ycta, —acay +2Bab , —Soab , +2koab | -
—28poab_ +2yctab_ —2Bayh, —4cagh, — 2koayh, + 25pcagh, — 2yo agh, + 2acayab, +
+2Bab +4caby +2kcab; —25pcab; +2yo ab; — aaalzbg) =0

1
F(—2 Ba_\b* +8ca_b*, —2koa b? +28pca b, —2ycta b’ —acagh®, +2fab’, —

—8oab’, +2koab’, —28poab’, + 2yctab’, + 2aca_jagh by + 2 Bayh’ b, +
+4oayh? by + 2koayh® by — 26pcayh? by + 2yotayh? by — aca’bg —2Ba_b b -

~4ca_ b by —2kca_b_b; +25pca_ib_ by — 27/0'2a_]b_1b§) =0

%(4aaa,1a0b71 + fagh?, + 230 ayh’, + koayh?, — Spoayh?, + yotagh?, —4acaya b’ —
—4aoca’ by —6pa_b by —18ca b b, —6koa b b, +63pca_b by —6yc*a_b by +
+daca_ab_ by +5pab’ by — 5o a,b? by + Skoah? by — 55poab’ by +Syolab? by +
+ Bagh_ b} — cagh_ b} + koayh_ by —Spoaygh_ by + yotagh bt — fa_by +ca_ b} —

~koa_ by +dpoa_by —yota_ b ) =0

1
F(—4a0'a,1ao — Bayh_, —23ca,b_, —koayh | +Spoagh_, — yotagh_, +4acayab | -

—5Ba_by +50a_by —5koa_b, +56poa_ b, —5ycta by +4aca_ab, +6fab b, +
+18ca,b_by +6kaab_ by —65poab_ by +6yc* ab_ by —4acalb_ by — Payhs + cagh; —

—koayhy +Spoayht — yotayht + pab; —oab} + koab; - Spoab; + ;/O'Zalbg) =0
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Here T'= [exp(&) + by + b_jexp(—<E)]. When this algebraic system is solved, we obtain
the values of coefficients ao, a;, a_i, by, b_,, and k as follows:

a#0,q =£, a_ =0, b, =L(—a2a§ +6aa0b0), o0,
a 36

® —fB+o+dpo—yot
k= OIS B0
o
2
a =0, a, %0, bozw, a,#0, b, =—laa_1, o #0,
(ii) 6a, 6
1
_ 2
i = P +0+0p0 —yo B £0
o

_ 2
(i) @20, a =22 ay=0, a, =0, b =0, ob, 20, k= LrAT+Po=y0
o

, B#0
o
_ 2
(iv) a4 =0, a_ =0, b0=—%, b,=0,0%0, k= protdpoyo , affay #0
o
aa
a,=0, by=0, a,(-12+aaq)#0, b, =——L— o(a_,—ab_,)=0,
© 0 o 1( 1) 1 12+aq ( 179 1)
\s

_ 2
k= p+40+opo—yo B0
o

If the coefficients obtained in (i)-(v) are written in their place in the solution function
expressed by (12), the solutions of eq. (9) are obtained:
p

xX+zp+—+tyo
o

7 36e , (see figs. 3 and 4)

X+zp+——+tyc
6e p o— et+t§p+y0'a2ao + 6et+t5p+yaab0

Uy (x,y,z,t) =

o Z L

"ML/"L__/LE';

10 F— ——————y
51

20 40

(c)
Figure 3. (a) The 3-D surfaces of the aforementioned solution for f=4,y=1,6=3,a=2,a,=1,
y=1,z=1,by=2,0=-2,p =3, (b) the 2-D surfaces of the aforementioned solution for =4,y =1,

c=3,a=2,ay=1,y=1,z=1,by=2,0=-2,p=3,t=1,t=2,¢=3, and (c) the contour plot of the
aforementioned solution for f=4,y=1,6=3,a=2,ay=1,y=1,z=1,by=2,0=-2,p=3
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20

_8 -10 -5 0 5 10
(b) (c)
Figure 4. (a) The 3-D surfaces of the aforementioned solution for f=4,y=1,6=3,a=2,a,=1,
y=1z=1,by=2,0 =-2,p =3, (b) the 2-D surfaces of the aforementioned solution for f =4,
y=1L,06=3,a=2,ay=1,y=1,z2=1,by=2,0=-2,p=3,t=1,t=2,¢=3 (c) the contour plot of the
aforementioned solution for f=4,y=1,6=3,a=2,a)=1,y=1,z2=1,by=2,0=-2,p=3

6et+t5p+y0'a0
u2(-x:yaz;t)= 1B
X+zp+—+tyo
6e o _et+t5p+yaaa0
1262(x+2p)
Uy (x, ¥, Z,t) = 27
2(x+zp) 2y0'+t(8+25p—7—2y0')
ale +e b,
a
0
”4(X,y,2,t)= B

x+zp—yo‘+t(—l—5p+7+;/0') aa
e c /-2

6

2p
2ycr+t[8+26‘p———27aj
2(x+
e “ a_ +e )y (-12+aa)
”S(Xay,Z,f)= 28
2ya+t(8+26p———2yaj 2(x+z )
e i aa_+e " (<12 +aa)

Conclusion

In this study, we have obtained the exact solutions of (2+1) and (3+1)-D constant
coefficient KdV equations by applying the exponential function method. These exact solutions
we find are in the form of an exponential function. In addition, we have seen that these solu-
tions provide the equations by using MATHEMATICA 11.3 program. Apart from that, we have
shown the graphics performance of some of the solutions found. This method can be applied to
many non-linear PDE and systems of equations.
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