THERMAL SCIENCE
International Scientific Journal
CANAL HYPERSURFACES ACCORDING TO ONE OF THE EXTENDED DARBOUX FRAME FIELD IN EUCLIDEAN 4-SPACE
ABSTRACT
In the present study, we deal with canal hypersurfaces according to extended Darboux frame field of second kind in Euclidean 4-space (E4) and in this context, firstly we obtain the Gaussian, mean and principal curvatures of the canal hypersurface according to extended Darboux frame field of second kind and give some results for flatness and minimality of these hypersurfaces in E4. Also, we give some results for Weingarten canal hypersurfaces according to extended Darboux frame field of second kind in E4 and finally, we construct an example.
KEYWORDS
PAPER SUBMITTED: 2021-06-19
PAPER REVISED: 2021-11-01
PAPER ACCEPTED: 2022-05-06
PUBLISHED ONLINE: 2022-07-23
THERMAL SCIENCE YEAR
2022, VOLUME
26, ISSUE
Issue 4, PAGES [3029 - 3041]
- Hartman, E., Geometry and Algorithms for Computer Aided Design, Dept. of Math. Darmstadt Univ. of Technology, Darmstadt, Germany, 2003
- Kim, Y. H., et al., Some Characterizations of Canal Surfaces, Bull. Korean Math. Soc., 53 (2016), 2, pp. 461-477
- Aslan, S., Yaylı, Y., Canal Surfaces with Quaternions, Adv. Appl. Clifford Algebr., 26 (2016), Sept., pp. 31-38
- Gray, A., Modern Differential Geometry of Curves and Surfaces with Mathematica, 2nd ed., CRC Press, Boca Raton, Fla., USA, 1999
- Hu, S., et al., Tubular Surfaces of Center Curves on Spacelike Surfaces in Lorentz-Minkowski 3-Space, Math. Meth. Appl. Sci., 42 (2019), 9, pp. 3136-3166
- Izumiya, S., Takahashi, M., On Caustics of Submanifolds and Canal Hypersurfaces in Euclidean Space, Topology Appl., 159 (2012), 2, pp. 501-508
- Karacan, M. K., et al., Singular Points of Tubular Surfaces in Minkowski 3-Space, Sarajevo J. Math., 2 (2006), 14, pp. 73-82
- Karacan, M. K., Tuncer, Y., Tubular Surfaces of Weingarten Types in Galilean and Pseudo-Galilean, Bull. Math. Anal. Appl., 5 (2013), 2, pp. 87-100
- Kazan, A., et al., Geometric Characterizations of Canal Hypersurfaces in Euclidean Spaces, On-line first, doi.org/10.48550,arXiv:2111.04448v1
- Maekawa, T., et al., Analysis and Applications of Pipe Surfaces, Comput. Aided Geom. Design, 15 (1998), 5, pp. 437-458
- Peternell, M., Pottmann, H., Computing Rational Parametrizations of Canal Surfaces, Journal Symbolic Comput., 23 (1997), 2-3, pp. 255-266
- Ro, J. S., Yoon, D. W., Tubes of Weingarten Type in a Euclidean 3-Space, Journal of the Chungcheong Mathematical Society, 22 (2009), 3, pp. 359-366
- Ucum, A., Ilarslan, K., New Types of Canal Surfaces in Minkowski 3-Space, Adv. Appl. Clifford Algebr., 26 (2016), 1, pp. 449-468
- Xu, Z., et al., Analytic and Algebraic Properties of Canal Surfaces, Journal Comput. Appl. Math., 195 (2006), 1-2, pp. 220-228
- Yoon, D. W., Kucukarslan Yuzbası Z., Tubular Surfaces with Galilean Darboux Frame in G3, Journal of Mathematical Physics, Analysis, Geometry, 15 (2019), 2, pp. 278-287
- Abdel-Aziz, H. S., Saad, M. K., Computation of Smarandache Curves According to Darboux Frame in Minkowski 3-Space, Journal Egyptian Math. Soc., 25 (2017), 4, pp. 382-390
- Aslan, M.C., Unluturk, Y., On the Variational Curves Due to the ED-Frame Feld in Euclidean 4-Space, Turk. J. Math, 44 (2020), 4, pp. 1442-1452
- Bishop, R. L., There is More Than one Way to Frame a Curve, Amer. Math. Monthly, 82 (1975), 3, pp. 246-251
- Carmo, M. P. D., Differential Geometry of Curves and Surfaces, Prentice Hall, Englewood Cliffs, N. J., USA, 1976
- Dogan, F., Yaylı, Y., Tubes with Darboux Frame, Int. J. Contemp. Math. Sci., 7 (2012), 16, pp. 751-758
- Duldul, B. U., A New Method for Finding the Shape Operator of a Hypersurface in Euclidean 4-Space, Filomat, 32 (2018), 17, pp. 5827-5836
- Duldul, M., et al., Extension of the Darboux frame into Euclidean 4-Space and Its Invariants, Turk. J. Math., 41 (2017), 6, pp. 1628-1639
- Kazan, A, Karadag, H. B., Magnetic Curves According to Bishop Frame and Type-2 Bishop Frame in Euclidean 3-Space, British Journal of Mathematics & Computer Science, 22 (2017), 4, pp. 1-18
- Kiziltug, S., et al., Tubular Surfaces with Darboux Frame in Galilean 3-Space, Facta Universitatis Ser. Math. Inform., 34 (2019), 2, pp. 253-260
- O'Neil. B., Semi-Riemannian Geometry with Applications to Relativity, Academic Press, London, UK, 1983
- Takahashi, T., Curves Always Lie in the Plane Spanned by Darboux Frame, Rendiconti del Circolo Matematico di Palermo Series 2, 70 (2021), 2, pp. 1083-1098
- Gluck, H., Higher Curvatures of Curves in Euclidean Space, Amer. Math. Monthly, 73 (1966), 7, pp. 699-704
- Altin, M., et al., Monge Hypersurfaces in Euclidean 4-Space with Density, Journal of Polytechnic, 23 (2020), 1, pp. 207-214
- Altin, M., et al., The 2-Ruled Hypersurfaces in Euclidean 4-Space, Journal Geom. Phys., 166 (2021), 104236, pp. 1-13
- Altin, M., Kazan, A., Rotational Hypersurfaces in Lorentz-Minkowski 4-Space, Hacet. J. Math. Stat., 50 (2021), 5, pp. 1409-1433
- Altin, M., Rotational Hypersurfaces in Euclidean 4-Space with Density, Journal of Polytechnic, 25 (2022), 1, pp. 107-114
- Altin, M., et al., Hypersurface Families with Smarandache Curves in Galilean 4-Space, Communications Faculty of Science University of Ankara Series A1, Mathematics and Statistics, 70 (2021), 2, pp. 744-761
- Aydin, M. E., Mihai, I., On Certain Surfaces in the Isotropic 4-Space, Mathematical Communications, 22 (2017), 1, pp. 41-51
- Guler, E., et al., The Gauss map and the third Laplace-Beltrami Operator of the Rotational Hypersurface in 4-Space, Symmetry, 10 (2018), 9, pp. 1-11
- Turan, C., et al., Hypersurface Families with Common Non-Null Geodesic in Minkowski 4-Space, Advanced Studies: Euro-Tbilisi Mathematical Journal, 15 (2022), 1, pp. 167-180
- Lee, J. M., Riemannian Manifolds-An Introduction Curvature, Springer-Verlag New York, Inc, USA, 1997