THERMAL SCIENCE

International Scientific Journal

Authors of this Paper

External Links

CANAL HYPERSURFACES ACCORDING TO ONE OF THE EXTENDED DARBOUX FRAME FIELD IN EUCLIDEAN 4-SPACE

ABSTRACT
In the present study, we deal with canal hypersurfaces according to extended Darboux frame field of second kind in Euclidean 4-space (E4) and in this context, firstly we obtain the Gaussian, mean and principal curvatures of the canal hypersurface according to extended Darboux frame field of second kind and give some results for flatness and minimality of these hypersurfaces in E4. Also, we give some results for Weingarten canal hypersurfaces according to extended Darboux frame field of second kind in E4 and finally, we construct an example.
KEYWORDS
PAPER SUBMITTED: 2021-06-19
PAPER REVISED: 2021-11-01
PAPER ACCEPTED: 2022-05-06
PUBLISHED ONLINE: 2022-07-23
DOI REFERENCE: https://doi.org/10.2298/TSCI2204029K
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2022, VOLUME 26, ISSUE Issue 4, PAGES [3029 - 3041]
REFERENCES
  1. Hartman, E., Geometry and Algorithms for Computer Aided Design, Dept. of Math. Darmstadt Univ. of Technology, Darmstadt, Germany, 2003
  2. Kim, Y. H., et al., Some Characterizations of Canal Surfaces, Bull. Korean Math. Soc., 53 (2016), 2, pp. 461-477
  3. Aslan, S., Yaylı, Y., Canal Surfaces with Quaternions, Adv. Appl. Clifford Algebr., 26 (2016), Sept., pp. 31-38
  4. Gray, A., Modern Differential Geometry of Curves and Surfaces with Mathematica, 2nd ed., CRC Press, Boca Raton, Fla., USA, 1999
  5. Hu, S., et al., Tubular Surfaces of Center Curves on Spacelike Surfaces in Lorentz-Minkowski 3-Space, Math. Meth. Appl. Sci., 42 (2019), 9, pp. 3136-3166
  6. Izumiya, S., Takahashi, M., On Caustics of Submanifolds and Canal Hypersurfaces in Euclidean Space, Topology Appl., 159 (2012), 2, pp. 501-508
  7. Karacan, M. K., et al., Singular Points of Tubular Surfaces in Minkowski 3-Space, Sarajevo J. Math., 2 (2006), 14, pp. 73-82
  8. Karacan, M. K., Tuncer, Y., Tubular Surfaces of Weingarten Types in Galilean and Pseudo-Galilean, Bull. Math. Anal. Appl., 5 (2013), 2, pp. 87-100
  9. Kazan, A., et al., Geometric Characterizations of Canal Hypersurfaces in Euclidean Spaces, On-line first, doi.org/10.48550,arXiv:2111.04448v1
  10. Maekawa, T., et al., Analysis and Applications of Pipe Surfaces, Comput. Aided Geom. Design, 15 (1998), 5, pp. 437-458
  11. Peternell, M., Pottmann, H., Computing Rational Parametrizations of Canal Surfaces, Journal Symbolic Comput., 23 (1997), 2-3, pp. 255-266
  12. Ro, J. S., Yoon, D. W., Tubes of Weingarten Type in a Euclidean 3-Space, Journal of the Chungcheong Mathematical Society, 22 (2009), 3, pp. 359-366
  13. Ucum, A., Ilarslan, K., New Types of Canal Surfaces in Minkowski 3-Space, Adv. Appl. Clifford Algebr., 26 (2016), 1, pp. 449-468
  14. Xu, Z., et al., Analytic and Algebraic Properties of Canal Surfaces, Journal Comput. Appl. Math., 195 (2006), 1-2, pp. 220-228
  15. Yoon, D. W., Kucukarslan Yuzbası Z., Tubular Surfaces with Galilean Darboux Frame in G3, Journal of Mathematical Physics, Analysis, Geometry, 15 (2019), 2, pp. 278-287
  16. Abdel-Aziz, H. S., Saad, M. K., Computation of Smarandache Curves According to Darboux Frame in Minkowski 3-Space, Journal Egyptian Math. Soc., 25 (2017), 4, pp. 382-390
  17. Aslan, M.C., Unluturk, Y., On the Variational Curves Due to the ED-Frame Feld in Euclidean 4-Space, Turk. J. Math, 44 (2020), 4, pp. 1442-1452
  18. Bishop, R. L., There is More Than one Way to Frame a Curve, Amer. Math. Monthly, 82 (1975), 3, pp. 246-251
  19. Carmo, M. P. D., Differential Geometry of Curves and Surfaces, Prentice Hall, Englewood Cliffs, N. J., USA, 1976
  20. Dogan, F., Yaylı, Y., Tubes with Darboux Frame, Int. J. Contemp. Math. Sci., 7 (2012), 16, pp. 751-758
  21. Duldul, B. U., A New Method for Finding the Shape Operator of a Hypersurface in Euclidean 4-Space, Filomat, 32 (2018), 17, pp. 5827-5836
  22. Duldul, M., et al., Extension of the Darboux frame into Euclidean 4-Space and Its Invariants, Turk. J. Math., 41 (2017), 6, pp. 1628-1639
  23. Kazan, A, Karadag, H. B., Magnetic Curves According to Bishop Frame and Type-2 Bishop Frame in Euclidean 3-Space, British Journal of Mathematics & Computer Science, 22 (2017), 4, pp. 1-18
  24. Kiziltug, S., et al., Tubular Surfaces with Darboux Frame in Galilean 3-Space, Facta Universitatis Ser. Math. Inform., 34 (2019), 2, pp. 253-260
  25. O'Neil. B., Semi-Riemannian Geometry with Applications to Relativity, Academic Press, London, UK, 1983
  26. Takahashi, T., Curves Always Lie in the Plane Spanned by Darboux Frame, Rendiconti del Circolo Matematico di Palermo Series 2, 70 (2021), 2, pp. 1083-1098
  27. Gluck, H., Higher Curvatures of Curves in Euclidean Space, Amer. Math. Monthly, 73 (1966), 7, pp. 699-704
  28. Altin, M., et al., Monge Hypersurfaces in Euclidean 4-Space with Density, Journal of Polytechnic, 23 (2020), 1, pp. 207-214
  29. Altin, M., et al., The 2-Ruled Hypersurfaces in Euclidean 4-Space, Journal Geom. Phys., 166 (2021), 104236, pp. 1-13
  30. Altin, M., Kazan, A., Rotational Hypersurfaces in Lorentz-Minkowski 4-Space, Hacet. J. Math. Stat., 50 (2021), 5, pp. 1409-1433
  31. Altin, M., Rotational Hypersurfaces in Euclidean 4-Space with Density, Journal of Polytechnic, 25 (2022), 1, pp. 107-114
  32. Altin, M., et al., Hypersurface Families with Smarandache Curves in Galilean 4-Space, Communications Faculty of Science University of Ankara Series A1, Mathematics and Statistics, 70 (2021), 2, pp. 744-761
  33. Aydin, M. E., Mihai, I., On Certain Surfaces in the Isotropic 4-Space, Mathematical Communications, 22 (2017), 1, pp. 41-51
  34. Guler, E., et al., The Gauss map and the third Laplace-Beltrami Operator of the Rotational Hypersurface in 4-Space, Symmetry, 10 (2018), 9, pp. 1-11
  35. Turan, C., et al., Hypersurface Families with Common Non-Null Geodesic in Minkowski 4-Space, Advanced Studies: Euro-Tbilisi Mathematical Journal, 15 (2022), 1, pp. 167-180
  36. Lee, J. M., Riemannian Manifolds-An Introduction Curvature, Springer-Verlag New York, Inc, USA, 1997

2025 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence