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In the present study, we deal with canal hypersurfaces according to extended Dar-
boux frame field of second kind in Euclidean 4-space (E*) and in this context, firstly
we obtain the Gaussian, mean and principal curvatures of the canal hypersurface
according to extended Darboux frame field of second kind and give some results
for flatness and minimality of these hypersurfaces in E*. Also, we give some results
for Weingarten canal hypersurfaces according to extended Darboux frame field of
second kind in E* and finally, we construct an example.
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Introduction

In this section, firstly we will give some general literature review about canal (hyper)
surfaces and alternative frames to the Frenet frame and after that, we will recall some basic
notions about hypersurfaces and extended Darboux frame field of second kind in E*.

In 1850, Monge has firstly investigated the canal surfaces which are formed by sweep-
ing a sphere. These surfaces may be generated either by sweeping a sphere along a path, or by
sweeping a particular circular cross-section of the sphere along the same path and with the aid
of these methods, the parametric expression of canal surfaces can be given:

Q(x, y) = a(x) = r(x)r' (xX)T(x) + r(x)y/1—-r"(x) (cos YN(x)+sin yB(x))

where a(x) is called the spine curve or center curve which is a unit speed curve, 7(x) is called
the radius function, and {7, N, B} is called the Frenet frame of a(x). In case of a constant radius
function, the canal surface is called tubular or pipe surface [1, 2]. Also for a canal surface, if
the center curve is a straight line, then it becomes a surface of revolution. Canal surfaces (es-
pecially tubular surfaces) have been applied to many fields by mathematicians and engineers,
such as the solid and the surface modelling for CAD/CAM, construction of blending surfaces,
shape re-construction and so on. In this context, canal and tubular (hyper)surfaces have been
studied by many scientists in Euclidean, Minkowskian, Galilean or pseudo-Galilean spaces, see
[2-15 and etc.).

On the other hand, the Frenet frame has been used in many studies about curves and
surfaces. But Frenet frame cannot be identified at the points where the curvature is zero and so,
scienticists sometimes need alternative frames. Therefore, new alternative frames to the Frenet
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frame such as Bishop frame, Darboux frame or extended Darboux frames have been defined
by geometers and the theories of curves and surfaces have been started to handle according to
these alternative frames, [16-26].

For instance, the Darboux frame is a natural moving frame constructed on a surface. If
M is aregular surface and a: / € R — M is a unit speed curve on the surface M then the Darboux
frame {e;(x), B(x) = n.(x)xe;(x), n,(x)} is well-defined along a, where e,(x) is the unit tangent
vector of a(x) and n,(x) is the unit normal vector of M along a. Also, Darboux equations of this
frame:

€(x) = K, (x)B(x) + &, (x)n, (x)
B'(x) = -k, (x)e, (x) +7,(x)n, (x) (1)

n, (x) = =k, (x)e,(x) —7,(x) B(x)
where x,(x), x(x), and z,(x), are the normal curvature, the geodesic curvature, and the geodesic
torsion of a(x), respectively. We can visualize a curve a which has Darboux frame on a surface

M and a tubular surface 7 which is generated by the Darboux frame of the center curve o in
Euclidean 3-space, fig. 1.

Center curve a

Figure 1.

Now, let we recall some basic notions about curves and hypersurfaces in E*.
Let {e,, e,, e, e,} be the standart basis of E* and X' = (x, X2, X3, X3), ¥ = (V1, V2, V3, Va)s
and z’ = (z,, z,, z3, z4) be three vectors in £*. Then the inner product of two vectors is defined:

. 4
<x > y > = zxi y i
i=1
and the vector product of three vectors is defined:

Xy V324 =X V423 = X3V Zy F X3V Zy X, )23 — X4 V32,
= = = | TONZ TNV Zy F XN 2 — XY, 2 — X N 25 T X Y52
XX yxz= (2)

X VoZy =X\ V42 =X N2y T Xy V2 H XN 2, — X4 D)2,

TNV 23t X V32, X V123 — X V32 T X N 2y X5 0,2



Kazan, A.: Canal Hypersurfaces According to One of the Extended ...
THERMAL SCIENCE: Year 2022, Vol. 26, No. 4A, pp. 3029-3041 3031

Let M c E* denote a regular hypersurface and a: I € R — M be a unit speed curve
in E* If {T, n, by, b,} is the moving Frenet frame along «, then the Frenet formulas are given:

T'=kn,n'=—kT+kb, b =—kn+kb, and b = kb, 3)

where T, n, by, and b, denote the unit tangent, the principal normal, the first binormal, and the
second binormal vector fields, ki, k,, and k3 are the curvature functions of the curve o [27].

Now, we will recall the extended Darboux frame field of second kind along a curve
and for simplicity we’ll call it ED*-frame field. For details about the construction of ED*-frame
field, we refer to [22].

We consider an embedding Q: U < E* — E*, where U is an open subset of £. Now,
we denote M = Q(U) and identify M and U through the embedding Q. Let a.: / — U be a regular
curve and we have a curve a: [ — M c E* defined by a(x) = Q(a(x)) and so, the curve a is on the
hypersurface M. If M is an orientable hypersurface oriented by the unit normal vector field N/
in £* and a is a Frenet curve of class C"(n > 4) with arc-length parameter x lying on M, then we
denote the unit tangent vector field of the curve by 7 and denote the hypersurface unit normal
vector field restricted to the curve by N, i.e. T(s) = a'(x) and N(s) = Ma(x)).

If the set {NV, T, a"} is linearly dependent, i.e. if a” is in the direction of the normal
vector N, applying the Gram-Schmidt orthonormalization method to {N, T, a""} yields the or-
thonormal set {N, T, E}, where:
a”—{a",NYN—{a",T)T

E =
o~ (" MYV~ {a.T)1]

Here, if D =N x T x E is defined, then four unit vector fields 7, £, D, and N, which are mutually
orthogonal at each point of a, have been obtained. So, the authors have obtained a new ortho-
normal frame field {7, E, D, N} along the curve a instead of its Frenet frame field [22] and we
will call it ED*-frame field. The differential equations of ED*-frame fields {7, E, D, N} of the
curve ¢ in the E£*can be given:

T'=x,N
r__ 2 1
E —KgD+TgN @
r_ 2
D ——K'gE

N'=-k,T-1,E

where x, = (7', N) is the normal curvature of the hypersurface in the direction of the tangent
vector T, k= (E', D) is the geodesic curvature of order 2, and 7, = (£", N) is the geodesic torsion
of order 1. Also, the relation matrix may be expressed:

n cosg cosg, cosd, || E
b |=|cosy, cosy, cosy, || D ®)
b, cosf, cosd, cosb, || N

as using the orthogonality of above 3 x 3 coefficient matrix:

E cos¢g, cosy, cos6 || n
D |=|cos¢, cosy, cosd, || b (6)
N cosg, cosy, cosd; ||b,
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where
K, =(T',N) =k cosg
7, = —¢, sing, cos gy —y, siny, cosy; — 6, sin 6, cos b, +
+k,(cos g, cosy, —cosy, cos @, )+ k,(cosy, cos @, —cos b, cosy,) (7)
K. =—¢ sing, cos g, —y, siny, cosy, — 0, sin 6, cos b, +
+k,(cos @, cosy, —cosy, cosd,) + k;(cosy, cos @, —cos b, cosy,)

Furthermore, the differential geometry of different types of (hyper)surfaces in 4-D
spaces has been a popular topic for geometers, recently, [17, 28-35], and etc. If Q: Uc E* — E*
is a hypersurface in E* parametrized by:

Q(xsyaz) = (Ql (x’y’ Z)!Qz(x’y’Z)ﬂg3(x’y’Z)=Q4(x’yvz))

then the unit normal vector field and the coefficients of the first and second fundamental forms:

Q xQ xQ
L E—— g, :<QX_,QX_> and A, :<QX_Y_,NQ> (8)
"Qx xQ xQ. " o v
respectively, where:
o - oQx,,x,,x,;) o = 0’Q(x,,x,,x;) i = (.23}
Y ox, T ox,x; o o

i

Also, if [g;] " is inverse matrix of matrix form of the first fundamental form [g;] and [/;] is ma-
trix form of the second fundamental form, then shape operator of the hypersurface €:
A=[a;1=[g,1"[h;] )
With the aid of eqgs. (8) and (9), the Gaussian curvature K and mean curvature H of a
hypersurface in E*[36]:
det[/,
] g g =D (10)
[g;] 3

We say that a hypersurface is flat or minimal, if it has zero Gaussian or zero mean
curvature, respectively.

K =det(4)=

Canal hypersurfaces according to ED*-frame field in E*

In this section, we study the canal hypersurfaces according to ED*-frame field in E*
and in this context, we will give some geometric characterizations about them.

Let a: I — M be a unit speed curve on the regular hypersurface M and let we consider
the canal hypersurface according to ED*-frame field in £* parametrized:

C(x,y,z)=a(x)—r(x)r'(x)T(x)+
+r(x)1-7'(x) [(cosycos z) E(x)+(sin y cos z) D(x) +(sin z)N(x)] (11)

where a(x) is center curve of the canal hypersurface, 7(x) — the radius function, x € [0, /] and
v, z € [0, 21). Also, from now on we state a = a(x), r = r(x), ' = [dr(x)])/dx , T= T(x), E = E(x),
D = D(x), N = N(x), and we will consider the + as +. One can obtain similar results by taking
the sign as —.
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Firstly from eq. (4), the first derivatives of the canal hypersurface eq. (11) are ob-
tained:

C = ( 1 Frsinz+r ))T+

(r’cosycosz —r(/cg sin ycosz+ rg sin z))(l —r'z)—rr’r” COS Y COS Z
+ E+
1-7"

. ((}"K; cos y+r'sin y)(l —r'z)—rr’r” sin y)cosz D

NI
= 7, (1—r'2)cosycosz—r'r”sinz
+| FN1=r"sinz+r| —r'c, + N (12)

1—}”,2
Cy - /1_ 2 ((sinycos z)E —(COSyCOS Z)D)

C. =-rll-r" ((cosysinz)E+(sinysinz)D—(cosz)N)
From eq. (8) and eq. (12), the unit normal vector field of (11) in E*:

N ==r'T +31-r" ((cos ycos z) E +(sin y cos z) D +(sinz) N (13)
Also, the coefficients of the first fundamental form of eq (11) are given:

(l—r'z)(l—r'2 —V(K‘n\/l—l”’z sinz+r”))2 +

2
2 L3 | 2 ’ 2 "
1 +(r(1cg sinycosz+7, smz)(l—r )—r (l—r —rr )cosycosz) +

+coszz(/(;r(l—r’2 )cosy+ r'(l—r'2 —rr”)sin y)z +
+{r' - )sinz + I’(T; (l -r" )cosycosz - r'(/c" VI-7"7 +7"sin z))}2 (14)

(1

2, =g, =(1=-r")’ (K; cosz—i—‘r;, sin ysin Z)COSZ
&
4

=g, =— (Kr'\ll ¥ cosz— z'(l r' )cosy)

» = rz(l_r )COSZngzs =8n = O,g33 =r (l_rlz)
and it follows that:

2
det[g,]1=r"(1 —r’z)(l —r"? —I”(Kn N1-r"7sinz+ r”)) cos’z (15)

Now, for obtaining the coefficients of the second fundamental form, let we give the
second derivatives:
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of the canal hypersurface eq. (11):
C.=C.T+C.E+C.D+C:N
(—r'(l - )siny + I"(—K‘; (1 - )cosy +7'7"sin y))cosz
C,=C, = E+
Xy yx m
r'(1=7"%)cos y—r(x2(1—r")sin y+r'r"cos y)|cos z
( ( ) ( g( ) )) D—r;rmsinycoszN
NI
C.=C, =-xrN1—r" coszT +
(r(/(; sin ysinz -7, cos z)—r’cosysinz)(l - r’2)+rr’r”cosysinz

+ E+

N1=77?
—k2rcosy—r'siny)(1-7")+rr'r"sin y)sin z
Astreoy=rsims )= )eresinsin:
N
. —z’ér(l—r’z)cosysinz+(r'(1—r'2 —rr”)cosz N (16)
\/l—r2
—rvl- (cosycos zE +sin y cos ZD)
=rvl- (smyssz cosyssz)

Cz =—r\1—-r" (cos ycos zE +sin y cos zD +sin zN )

+

where

_rl(zk.n (I—V,Z)SinZ-i-?)l"" ,1—7'2)-1—
() rN1=r" k7, (l—r'z)cosycosz—
+r
1 —K, (l —r"? )sinz+21cnr'r" sinz—r"J1—r"?

2

1-r

(l—r'z) 2K§r'(l—r’z)sinycosz+ .
+21';r'(1—r'2)sinz—r”(l—3r'2)cosycosz

|:<K'g2)2+(1";)2:|(1—1"2) cosycosz+(K ) (1—r'2)2 sin ycosz +
+(z';),(1—r'2)2 sinz— 2K2r'r"( '2)smycosz—

r;r’(l_r'z)(;cnxll—r’ +2r" sinz)+
+(7”"+r'(1—r'2)r”’)cosycosz

(1 . )3/2

+r
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(1—r'2)(2/{51"(1—1"2)Cosy+r"(1—3’”,2)SiUJ’)COSZ_

(ng )2 (1 -r" )2 sin ycos z + i, (1 —r" )(z’; (1 —r? )sinz +2r'r" cos ycos z +)
—r

+cosz(—(/<;)'(1—r'2 )2 cosy+(r"2 +r "’(1 —r'z))sin y)

o (1—]"’2 )3/2
(1—1*’2)(22':’,1”'(1—r'z)cosycosz+rcn\/1—r’2 (1—2r’2)+(1—3r'2)r”sinz)—

2 2 2N.2 s 21 2\2 .
(x,) sinz—(x,)" 2—r")r s1nz+1cgz’g(l—r’ ) sin ycosz +

1\2 2\2 . 1y N 25,72
+(7,) (l—r ) sinz—(z,)'cos ycosz+(z,) (2—r"")r-cosycosz+

+(K,, )’(1 _ rlZ )3/2rr + 2’(,1 (1 _ rlZ )3/2rv +

-r

rm

+2z'; (1 —r"? )r'r” cos ycosz+r" sinz+(1-7")r'r"sin z

(1 _ )3/2

Thus from egs. (8), (13), and (16), the coefficients of the second fundamental form of
eq. (11) are given:

Cl =

g

2
h, = —%(4(1{2 )2 cos’z +4K.7, sin ysin(2z)+(z,)’ (3+cos(2y)—2sin2y cos(22)))+

K ((sinz+ 27! rr' cos y cos z)(l—r’2)—2rr”sin z) "
n g 2 .2 ” 2 " "
+ - —(K'n) l”(s]n Z+7r " cos Z)+I" T
V172 1-r2 (7
hy, =hy, = —r(l—r'z)(/{§ cos z+ 7, sin ysin z)cos z, hy, =-r(1-r")cos’z

hy=hy, = r(l{nr'\ll—r’z cosz—r;(l—r’z)cosy), hy, =hy, =0, hy=-r(1-7")
and it implies:

detlh,] = rz(l—r’z)(/cn\/l—r’z sinz+ r")(l—r'2 —r(Kn\/l—r’z sinz+ r"))coszz (18)

So, from egs. (10), (15), and (18), we have:
Proposition 1. The Gaussian curvature of the canal hypersurface eq. (11) according to

ED?-frame field in E*:
_ K, N1—7"7sinz+r"

rz(l—r'z—r(lfnxll—r'2 sinz+r”)) (19)

Corollary 1. The Gaussian curvature of the canal hypersurface eq. (11) according to
ED*-frame field in £* is only depend on the normal curvature, radius function and z.

Proposition 2. If the curve a is an asymptotic curve on M, then the Gaussian curvature
of the canal hypersurface eq. (11) according to ED*-frame field in £*:

_ r
k= r (l—r'2 —rr")



Kazan, A.: Canal Hypersurfaces According to One of the Extended ...
3036 THERMAL SCIENCE: Year 2022, Vol. 26, No. 4A, pp. 3029-3041

Proof. We know that [22], a curve «a is an asymptotic curve if and only if x, = 0 along
a. Thus from eq. (19), the proof completes.

Corollary 2. The canal hypersurface (11) according to ED*-frame field in E* is flat if
the curve o is an asymptotic curve on M and the radius function 7 is linear such that (x) = ax + b,
a€(-1,1),anda, b € R.

Proof. 1f the curve a is asymptotic and r is linear, then the Gaussian curvature vanish-
es and this completes the proof.

By taking r(x) = r constant in eq. (11), we have:

T(x,,z)=a(x)* r[(cosycos z) E(x)+(sin y cos z) D(x) +(sin z)N(x)] (20)

which is a tubular hypersurface according to ED*-frame field in £* and in this case, from eq.
(19) we get:
Corollary 3. The Gaussian curvature of the tubular hypersurface (20) according to
ED*frame field in E*:
_ K, sinz

r*(1-x,rsinz)

Also, after finding the inverse of the matrix of the first fundamental form and using
this and eq. (17) in eq. (9), the shape operator of the canal hypersurface eq. (11) is obtained by

A= [Aylss

K N1—7"7sinz+r" (l—r'z)(lcj +z'; sin y tan z)
1-r" —r(K,,msinzw”) r(l—r’2 —V(Knﬁsinz-i-}”"))
K rN1=r? cosz—7,(1-r")cos y 1

Ay = s Ay = Ay =——, Ay = A=Ay =4, =0
r(l—r'z—r(/(n\/l—r'2 sinz+r")) r

Hence from eq. (10) and the shape operator 4, we get:
Proposition 3. The mean curvature of the canal hypersurface (11) according to ED*-

frame field in £*:
3)’(1('"\/1—7"'2 sinz+r")+2r'2 -2
H —

= (21)
3r(1 - —r(/{n V1=7" sinz+r"))

Corollary 4. The mean curvature of the canal hypersurface (11) according to ED*-
frame field in £*is only depend on the normal curvature, radius function and z.

Corollary 5. The mean curvature of the tubular hypersurface (20) according to ED*-
frame field in E£*:

4, = s Ay =-

_ 3k,rsinz-2
3r(l-x,rsinz)
Corollary 6. If the curve a is an asymptotic curve on M, then the mean curvature of
the canal hypersurface (11) according to ED*-frame field in E*:
3"+ 277 =2

- 3r(1—r" —rr") (22)
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Corollary 7 Let o be an asymptotic curve on M. Then, the canal hypersurface (11)
according to ED*-frame field in £* is minimal if and only if the radius function 7(x) is given:

dr =tx+u, A, uck

4
3]
r
Proof. 1f the curve a is an asymptotic curve lying on M and the canal hypersurface
eq. (11) is minimal, then from eq. (22) we have:
3r(x)r"(x)+2r'(x)* =2 =0 (23)

The solution of the differential eq. (23) can be seen in [9] and so, the proof completes.
Here, from egs. (19) and (21), we can state the following theorem which gives an
important relation between Gaussian and mean curvatures:
Corollary 8. The Gaussian curvature K and the mean curvature H of the canal hyper-
surface (11) according to ED*-frame field in E* satisfy:
3Hr—Kr’ +2=0 (24)

Also, from the shape operator 4, we have:

K,AN1=r"7sinz+r"
1-r" —V(K'n\/l—l”’z sinz+r”)

2
7

—2|(1+2r)? 25)

det(A—AL,)=

By solving the equation det(A — Al;) = 0 from (25), we obtain the principal curvatures
of the canal hypersurface eq. (11) and tubular hypersurface (20) in E*:

Proposition 4. The principal curvatures of the canal hypersurface eq. (11) according to
ED*-frame field in E*:

1 _ K, N1—r"?sinz+r"
s 26
r 1-r" —I’(K'n\/l—l"'z sinz+r") (26)

and so, the principal curvatures of the tubular hypersurface (20) according to ED*-frame field
in E*:

K, sinz

h=A=— and =

1
r l-x,rsinz

27)

Also we know that, if a curve a is a unit-speed geodesic curve parametrized by arc-
length on an oriented hypersurface in E*, then we have [22]:

2 _ I _ _
K, =k;, T, =—k,, k, =k

So, from eqs. (19), (21), and (26) we get:

Corollary 9. Let the curve a be a unit-speed geodesic curve on M. Then the Gaussian
curvature K, mean curvature H, and third principal curvature 4; of canal hypersurface eq. (11)
according to ED*frame field in E*:
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k1~/1—r'2 sinz+r" - 3}”(!{1\/1—1”2 sinz+r”)+2r'2 -2

K: s
P (l—r'2 —r(kl -7 sinz—i—r")) 3r(1—r'2 —r(k1 -7 sinz+r”))
A= kN1=r"7sinz+7r"
1-r" —r(klxll—r’2 sinz+r”)
Now, if

HK -HK =0,HK -HK =0,HK -HK, =0

hold on a hypersurface, then we call the hypersurface as (4, K) ., 1, (H, K) g, -y, (H, K)y, .;-We-
ingarten hypersurface, respectively. So, from egs. (19) and (21) we have:

Proposition 5. The canal hypersurface eq. (11) according to ED*-frame field in E* is
(H, K), ., and (H, K),, ,,-Weingarten hypersurface. Also, the canal hypersurface eq. (11) ac-
cording to ED-frame field in E*is (H, K),, ,-Weingarten hypersurface, when the curve a is an
asymptotic curve on M.

Proof. The canal hypersurface eq. (11) satisfies H,.K, —H,K, = H K. — H.K, = 0 and so,
the first part of the Theorem is explicit. Also, from (19) and (21) we have:

2k,7' (1-7")"* cos z

3
3r (l—r’2 —r(/(n VI-7"?sinz+ r"))

and so, if the curve a is an asymptotic curve, using x, = 0 in the last equation, the proof com-
pletes.

H)CKZ _HZKX =

Also we know that, a hypersurface is called a linear Weingarten hypersurface, if it
satisfies aH + bK = ¢, where a, b, ¢ are not all zero constants. Thus, supposing » = constant in
eq. (24), we have:

Proposition 6. The tubular hypersurface eq. (20) according to ED*frame field in £* is
a linear Weingarten hypersurface.

Example for canal hypersurface according to ED?*-frame field in E*

In this section, we construct a canal hypersurface according to ED*-frame field in
E*, obtain its curvatures and draw its projections into 3-spaces. Let we consider the unit speed

curve:
a(x)= (2\/5 cos(?j,cos(?j,msin (%), ZﬁxJ (28)

5
on the hypercylinder M...x*> +)? + z> = 13 in E*. The unit tangent vector feld of a.

T(x)= %(—Zx/g sin [%), —sin (gj 13 cos (%) , 2\/5] (29)

Also, the unit normal vector of the hypercylinder is
N = (x,y,2,0)
Vi3

and so:
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N(x)=N(a(x))= (2\/% cos (%),%cos (%),sin (%), OJ (30)

Since a" is linear dependent with N, we can construct ED*-frame field along the curve
a. Thus we obtain the other vectors of ED*-frame field along the curve a:

E= é(%sin(%),%sin(%),—%ﬁcos(?),\/BJ

€2y
1
D=—(1,-21/3,0,0
75 )
and the normal curvature, geodesic curvature of order 2 and geodesic torsion of order 1:
K, =—£, K. =0,7. =& (32)
25 ¢ & 25

Hence using egs. (29)-(31) in eq. (11), we get the canal hypersurface according to

ED*-frame field in E*:
Clx, y,x) =

[ x .
cosz[lz sin (gj cos y+5sin y +j
2\Bcos(fj + 26\/§r'sin(£j +/13(1-7"7)

5) 65 5 x)
+10+/3 cos 3 sinz

Zﬁcosz[sin [%)cosy —5siny +J
+5005(£jsinz
5
J13sin R 137 cos X +~1=7"| 23 cos X \cos ycosz—5sin| = |sin z ,
5) 5 5 5 Y 5
%(Zﬁx—%/grr'+./13(1—r'2)rcosycosz)

and from egs. (19), (21), and eq. (32), we obtain the Gaussian and mean curvatures of the canal

hypersurface eq. (33):
1 1 _ 1”2
r(3r” —3V3(r)sinz] +27 -2

(33)

B

= cos[§j+é 13r'sin(§}+./l3(l—r'2)

—J13(1=7"%)sinz + 257" -
K: 2 1”2 . 1”2 4 ’ H_ 2 (34)
r (1/13(1—;’ )rs1nz+25(1—r —rr )) 3r[1—r’2—r[i’"—13(;5_r)smzﬁ

respectively. In fig. 2, one can see the projections of the hypersurface eq. (33) for z = n/3 and
7(x) = x/3 into x1x,x3-, X1XoX4-, X1X3X4-, and x,x3x4-spaces in figs. 2(a)-2(d), respectively.
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(c)

Figure 2.
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