THERMAL SCIENCE

International Scientific Journal

STUDY ON HEAT TRANSFER CHARACTERISTICS OF SINGLE-LAYER DOUBLE-ROW PULSATING HEAT PIPE

ABSTRACT
The structure and inclination angle of a pulsating heat pipe are critical factors influencing the heat transfer performance and operation mode. In this work, a single-layer double-row pulsating heat pipe is designed, and the start-up and heat transfer characteristics of pulsating heat pipe at limit angles (0°, 90°, and 180°) are experimentally investigated. Also, the operation mode and heat transfer characteristics are studied through infrared imager and temperature profiles. The study highlighted that the pulsating heat pipe has excellent operation characteristics in the limit angle. When the inclination angle is 0°, the double-row structure improves the start-up performance and at 90° inclination, the pulsating heat pipe starts the fastest, and the heat transfer resistance keeps the smallest in the whole test. When the inclination angle is 180°, the pulsating heat pipe has the best thermal sensitivity but weak working fluid-flow capacity during operation.
KEYWORDS
PAPER SUBMITTED: 2021-02-26
PAPER REVISED: 2021-06-23
PAPER ACCEPTED: 2021-06-24
PUBLISHED ONLINE: 2021-09-04
DOI REFERENCE: https://doi.org/10.2298/TSCI210226253S
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2022, VOLUME 26, ISSUE Issue 4, PAGES [3325 - 3334]
REFERENCES
  1. C. Dang, et al., Investigation on thermal design of a rack with the pulsating heat pipe for cooling CPUs, Appl. Therm. Eng., 110 (2017), 5, pp 390-398. doi.org/10.1016/j.applthermaleng.2016.08.187
  2. M. Uddin, et al., Energy efficiency and low carbon enabler green IT framework for data centers considering green metrics, Renew. Sust. Energy Rev., 16 (2012), 6, pp 4078-4094. doi.org/10.1016/j.rser.2012.03.014
  3. A. Arya, et al., Thermal performance analysis of a flat heat pipe working with carbon nanotube-water nanofluid for cooling of a high heat flux heater, Heat Mass Transfer., 54 (2018), 4, pp 985-997. doi.org/10.1007/s00231-017-2201-6
  4. M.M. Sarafraz, et al., Assessment of the thermal performance of a thermosyphon heat pipe using zirconiaacetone nanofluids, Renew. Energ.,136 (2019), ,pp 884-895. doi.org/10.1016/j.renene.2019.01.035
  5. M.M. Sarafraz, et al., Thermal evaluation of a heat pipe working with n-pentane-acetone and n-pentane-methanol binary mixtures, J. Therm. Anal. Calorim., 139 (2020), 6, pp 2435-2445. doi.org/10.1007/s10973-019-08414-2
  6. H. Akachi, Structure of a Heat Pipe, 1990, U.S. Patent 4921041.
  7. S. Jun, et al., Comparison of the thermal performances and flow characteristics between closed-loop and closed-end micro pulsating heat pipes, Int. J. Heat Mass Tran., 95 (2016),4 , pp 890-901. doi.org/10.1016/j.ijheatmasstransfer.2015.12.064
  8. S. Jun, et al., Experimental investigation on the effect of the condenser length on the thermal performance of a micro pulsating heat pipe, Appl. Therm. Eng., 130 (2018), 5, pp 439-448. doi.org/10.1016/j.applthermaleng.2017.11.009
  9. V. Ayel, et al., Experimental study of a closed loop flat plate pulsating heat pipe under a varying gravity force, Int. J. Therm. Sci., 96 (2015), 10, pp 3-34. doi.org/10.1016/j.ijthermalsci.2015.04.010
  10. S.M.Thompson, et al., An experimental investigation of a three-dimensional flat-plate oscillating heat pipe with staggered microchannels. Int. J. Heat Mass Tran., 54 (2011), 17, pp 3951-3959. doi.org/10.1016/j.ijheatmasstransfer.2011.04.030
  11. Z. Xue, et al., Experimental study on effect of inclination angles to ammonia pulsating heat pipe. Chinese J. Aeronaut., 27 (2014), 5, pp 1122-1127. doi.org/10.1016/j.cja.2014.08.004
  12. H. R. Goshayeshi, et al., Experimental study on the effect of inclination angle on heat transfer enhancement of a ferrofluid in a closed loop oscillating heat pipe under magnetic field. Exp. Therm. Fluid Sci., 74 (2016), 6, pp 265-270. doi.org/10.1016/j.expthermflusci.2016.01.003
  13. Aboutalebi M, et al., Experimental investigation on performance of a rotating closed loop pulsating heat pipe. Int. Commun. Heat Mass, 45 (2013), 7, pp 137-145. doi.org/10.1016/j.icheatmasstransfer.2013.04.008
  14. Kelly B, et al., Novel radial pulsating heat-pipe for high heat-flux thermal spreading. Int. J. Heat Mass Tran., 121 (2018), 6, pp 97-106. doi.org/10.1016/j.ijheatmasstransfer.2017.12.107
  15. Burban G, et al., Experimental investigation of a pulsating heat pipe for hybrid vehicle applications. Appl. Therm. Eng., 50 (2013), 1, pp 94-103. doi.org/10.1016/j.applthermaleng.2012.05.037
  16. P. Charoensawan, et al., Closed loop pulsating heat pipes Part A: parametric experimental investigations. Appl. Therm. Eng., 23 (2003), 16, pp 2009-2020. doi.org/10.1016/S1359-4311(03)00159-5
  17. J. Lee, et al., Effects of the number of turns and the inclination angle on the operating limit of micro-pulsating heat pipes. Int. J. Heat Mass Tran., 124 (2018), 9, pp 1172-1180. doi.org/10.1016/j.ijheatmasstransfer.2018.04.054
  18. K. H. Chien, et al., A novel design of pulsating heat pipe with fewer turns applicable to all orientations. Int. J. Heat Mass Tran., 55 (2012), 21, pp 5722-5728. doi.org/10.1016/j.ijheatmasstransfer.2012.05.068
  19. M. Mameli, et al., Thermal instability of a closed loop pulsating heat pipe: combined effect of orientation and filling ratio. Exp. Therm. Fluid Sci., 59 (2014), 11, pp 222-229. doi.org/10.1016/j.expthermflusci.2014.04.009
  20. N. Kammuang Lue, et al., Correlation to predict the maximum heat flux of a vertical closed-loop pulsating heat pipe. Heat Transfer Eng., 30 (2009), 12, pp 961-972. doi.org/10.1080/01457630902837442
  21. T. Katpradit, et al., Correlation to predict heat transfer characteristics of a closed end oscillating heat pipe at critical state. Appl. Therm. Eng., 25 (2005), 14, pp 2138-2151. doi.org/10.1016/j.applthermaleng.2005.01.009
  22. M. L. Rahman, et al., An experimental investigation on the effect of fin in the performance of closed loop pulsating heat pipe (CLPHP). Procedia Engineering, 105 (2015), pp 137-144. doi.org/10.1016/j.proeng.2015.05.049
  23. M. Li, et al., Effect of filling ratio and orientation on the performance of a multiple turns helium pulsating heat pipe. Cryogenics, 100 (2019), 6, pp 62-68. doi.org/10.1016/j.cryogenics.2019.04.006
  24. M. Ghanbarpour, et al., Thermal performance of inclined screen mesh heat pipes using silver nanofluids. Int. Commun Heat Mass, 67 (2015), 10, pp 14-20. doi.org/10.1016/j.icheatmasstransfer.2015.06.009
  25. J. Qu, et al., Start-up, heat transfer and flow characteristics of silicon-based micro pulsating heat pipes. Int. J. Heat Mass Tran., 55 (2012), 21, pp 6109-6120. doi.org/10.1016/j.ijheatmasstransfer.2012.06.024
  26. V. K. Karthikeyan, et al., Infrared thermography of a pulsating heat pipe: Flow regimes and multiple steady states. Appl. Therm. Eng., 62 (2014), 2, pp 470-480. doi.org/10.1016/j.applthermaleng.2013.09.041
  27. R. T. Dobson, et al., Lumped parameter analysis of closed and open oscillatory heat pipes, in: Proceedings of the 11th International Heat Pipe Conference, Tokyo, Japan, 1999, pp 12-16.
  28. S. J. Kline, et al., Describing uncertainties in single-sample experiments, Mech. Eng. 75 (1953) pp 3-8.
  29. F. M. Shang, et al., An experimental investigation on heat transfer performance of pulsating heat pipe. J. Mech. Sci. Technol., 34 (2020), 1, pp 425-433. doi.org/10.1007/s12206-019-1241-x

2025 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence