THERMAL SCIENCE

International Scientific Journal

External Links

ANALYSIS OF EQUILIBRIUM DISPERSIVE MODEL OF LIQUID CHROMATOGRAPHY CONSIDERING A QUADRATIC-TYPE ADSORPTION ISOTHERM

ABSTRACT
A single-component equilibrium dispersive model of liquid chromatography is solved analytically for a quadratic-type adsorption isotherm. The consideration of quadratic isotherm leads to a non-linear advection-diffusion PDE that hinders the derivation of analytical solution. To over come this difficulty, the Hopf-Cole and exponential transformation techniques are applied one after another to convert the given advection-diffusion PDE to a second order linear diffusion equation. These transformations are applied under the assumption of small non-linearity, or small volumes of injected concentrations, or both. Afterwards, the Fourier transform technique is applied to obtain the analytical solution of the resulting linear diffusion equation. For detailed analysis of the process, numerical temporal moments are obtained from the actual time domain solution. These moments are useful to observe the effects of transport parameters on the shape, height and spreading of the elution peak. A second-order accurate, high resolution semi-discrete finite volume scheme is also utilized to approximate the same model for non-linear Langmuir isotherms. Analytical and numerical results are compared for different case studies to gain knowledge about the ranges of kinetic parameters for which our analytical results are applicable. The effects of various parameters on the mechanism are analyzed under typical operating conditions available in the liquid chromatography literature.
KEYWORDS
PAPER SUBMITTED: 2020-12-29
PAPER REVISED: 2021-03-17
PAPER ACCEPTED: 2021-03-18
PUBLISHED ONLINE: 2021-05-16
DOI REFERENCE: https://doi.org/10.2298/TSCI201229179U
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2022, VOLUME 26, ISSUE Issue 3, PAGES [2069 - 2080]
REFERENCES
  1. Genuchten, M.Th. Van., Analytical solutions for chemical transport with simultaneous adsorption, zeroth-order production and first order decay, J. Hydrology., 49, (1981), pp. 213-233.
  2. Van Genuchten, M.Th., Alves W.J., Analytical solutions of the one dimensional convetive-dispersive solute transport equation, US Department of Agriculture, Technical Bulletin No. 1661, 1982.
  3. Ruthven, D.M., Principles of adsorption and adsorption processes, John Wiley and Sons, Wiley-Interscience, New York, 1984.
  4. Guiochon, G., Lin, B., Modeling for preparative chromatography, Academic Press, 2003.
  5. Guiochon, G., Felinger, A., Shirazi, D.G., Katti, A.M., Fundamentals of preparative and nonlinear chromatography, 2nd ed. ELsevier Academic press, New York, 2006.
  6. Carta, G., Exact analytic solution of a mathematical model for chromatographic operations, Chem. Eng. Sci., 43, (1988), pp. 2877-2883.
  7. Javeed, S., Qamar, S., Ashraf, W., Warnecke, G., Seidel-Morgenstern, A., Analytical and numerical investigation of two dynamic models for liquid chromatography, Chem. Eng. Sci., 90, (2013), pp. 17-31.
  8. Qamar, S., Abbasi, J. N., Javeed, S., Shah, M., Khan, F. U., Seidel-Morgenstern, A., Analytical solutions and moment analysis of chromatographic models for rectangular pulse injections. J. Chromatogr. A, 1315, (2013), pp. 92-106.
  9. Qamar, S., Kiran, N., Anwar, T., Bibi, S., Seidel-Morgenstern, A., Theoretical investigation of thermal effects in an adiabatic chromatographic column using a lumped kinetic model incorporating heat transfer resistances, Ind. Eng. Chem. Res., 57, (2018), pp. 2287-2297.
  10. Qamar, S., Abbasi, J. N., Javeed, S., Seidel-Morgenstern, A., Analytical solutions and moment analysis of general rate model for linear liquid chromatography, Chem. Eng. Sci., 107, (2014), pp. 192-205.
  11. Rhee, H.K., Aris, R., Amundson, N.R., First-order partial differential equations Vol. 1, Courier Corporation, 2014.
  12. Golshan-Shirazi, S., Ghodbane, S., Guiochon, G., Comparison between experimental and theoretical band profiles in nonlinear liquid chromatography with a pure mobile phase, Anal. Chem., 60, (1988), pp. 2630-2634.
  13. Katti, A. M., Ma, Z., Guiochon, G., Prediction of binary, overloaded elution profiles using the simple wave effect, AIChE J., 36, (1990), pp. 1722-1730.
  14. Guiochon, G., Ghodbane, S., Golshan-Shirazi, S., Huang, J. X., Katti, A., Lin, B. C., Ma, Z., Nonlinear chromatography recent theoretical and experimental results, Talanta, 36, (1989), pp. 19-33.
  15. Golshan-Shirazi, S., Guiochon, G., Solutions of the equilibrium and semi-equilibrium models of chromatography, J. Chromatogr. A, 506, (1989), pp. 495-545.
  16. Jacobson, S., Golshan-Shirazi, S., Guiochon, G., Chromatographic band profiles and band separation of enantiomers at high concentration, J. Am. Chem. Soc., 112, (1989), pp. 6492-6498.
  17. Ruthven, D. M., Goddard, M., Sorption and diffusion of C8 aromatic hydrocarbons in faujasite type zeolites. I. Equilibrium isotherms and separation factors, Zeolites, 6, (1989), pp. 275-282.
  18. Lightfoot, E. N., Equilibrium operation of chromatographic columns with longitudinal diffusion: Final form fronts, J. Phys. Chem., 61, (1957), pp. 1686-1686.
  19. Houghton, G., Band shapes in non-linear chromatography with axial dispersion, J. Phys. Chem., (1963), 67, pp. 84-88.
  20. Kubin, M., Beitrag zur Theorie der Chromatographie. II. Einfluss der Diffusion Ausserhalb und der Adsorption Innerhalb des Sorbens-Korns, Collect. Czech. Chem. Commun, 30, (1965), pp. 2900-2907.
  21. Kuˇcera, E., Contribution to the theory of chromatography: Linear non-equilibrium elution chromatography, J. Chromatogr. A, 19, (1965), pp. 237-248.
  22. Kubin, M., Beitrag zur Theorie der Chromatographie. Collect. Czech, Chem. Commun., 30, (1965), pp. 1104-1118.
  23. Lenhoff, A.M., Significance and estimation of chromatographic parameters, J. Chromatogr A, 384, (1987), pp. 285-299.
  24. Miyabe, K., Guiochon, G., Influence of the modification conditions of alkyl bonded ligands on the characteristics of reversed-phase liquid chromatography, J. Chromatogr. A, 903, (2000), pp. 1-12.
  25. Miyabe, K., Guiochon, G., Measurement of the parameters of the mass transfer kinetics in high performance liquid chromatography, J. Sep. sci., 26, (2003), pp. 155-173.
  26. Miyabe, K., Moment analysis of chromatographic behavior in reversed-phase liquid chromatography, J. Sep. sci., 32, (2009), pp. 757-770.
  27. Qamar, S., Seidel-Morgenstern, A., Extending the potential of moment analysis in chromatography, Tends Analyt. Chem., 81, (2016), pp. 87-101.
  28. Schneider, P., Smith, J.M., Adsorption rate constants from chromatography, AIChE J.,14, (1968), pp. 762-771.
  29. Suzuki, M., Notes on determining the moments of the impulse response of the basic transformed equations, J. Chem. Eng. Japan, 6, (1973), pp. 540-543.
  30. Wolff, H.-J., Radeke, K.-H, Gelbin, D., Weighted moments and the pore-diffusion model, Chem. Eng. Sci., 35, 1980, pp. 1481-1485.
  31. Javeed, S. Qamar, S., Seidel-Morgenstern, A.,Warnecke, G., Parametric study of thermal effects in reactive liquid chromatography, Chem. Eng. J., 191, (2012), pp. 426-440.
  32. Jaulmes, A., Vidal-Madjar, C., Ladurelli, A., and Guiochon, G.,Study of peak profiles in nonlinear gas chromatography, Derivation of a theoretical model. J. Phys. Chem., 88,(1984),22, pp. 5379-5385.
  33. Grushka, E., Myers, M. N., Giddings, J. C., Moments analysis for the discernment of overlapping chromatographic peaks, Anal. Chem., 42,(1970), pp. 21-26.
  34. Grushka, E., Myers, M. N., Schettler, P. D., Giddings, J. C., Computer characterization of chromatographic peaks by plate height and higher central moments, Anal. Chem., 41, (1969), pp. 889-892.
  35. Boniface, H. A., Ruthven, D. M., The use of higher moments to extract transport data from chromatographic adsorption experiments, Chem. eng. sci., 40, (1985), pp. 1401-1409.
  36. Javeed, S., Qamar, S., Seidel-Morgenstern, A., Warnecke, G., Efficient and accurate numerical simulation of nonlinear chromatographic processes, J. Comput. & Chem. Eng., 35, (2013), pp. 2294-2305.

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence