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A single-component equilibrium dispersive model of liquid chromatography is solved 
analytically for a quadratic-type adsorption isotherm. The consideration of quadrat-
ic isotherm leads to a non-linear advection-diffusion PDE that hinders the derivation 
of analytical solution. To over come this difficulty, the Hopf-Cole and exponential 
transformation techniques are applied one after another to convert the given ad-
vection-diffusion PDE to a second order linear diffusion equation. These transfor-
mations are applied under the assumption of small non-linearity, or small volumes 
of injected concentrations, or both. Afterwards, the Fourier transform technique is 
applied to obtain the analytical solution of the resulting linear diffusion equation. 
For detailed analysis of the process, numerical temporal moments are obtained from 
the actual time domain solution. These moments are useful to observe the effects 
of transport parameters on the shape, height and spreading of the elution peak. A 
second-order accurate, high resolution semi-discrete finite volume scheme is also 
utilized to approximate the same model for non-linear Langmuir isotherms. Analyti-
cal and numerical results are compared for different case studies to gain knowledge 
about the ranges of kinetic parameters for which our analytical results are applica-
ble. The effects of various parameters on the mechanism are analyzed under typical 
operating conditions available in the liquid chromatography literature.
Key words: single-solute elution, quadratic isotherm, Hopf-Cole transformation, 

analytical solutions, moment analysis, numerical solutions

Introduction

Liquid chromatography is a technique of separating mixture components that is based 
on different adsorptivities of the components to a specific adsorbent which is fixed inside a 
chromatographic column. The simplest process is the column liquid chromatography which in-
volves a single column charged with pulses of feeded sample (mixture). These injected sample 
is carried through the column by some liquid desorbent. While traveling through the column, 
the more adsorptive component of the sample is retained longer by the adsorbent and, thus, 
leaves the column after the less adsorptive components. This technique is widely used by var-
ious researchers in the fields of biology, chemistry, biochemistry, as well as in environmental 
and clinical sciences. Such a popularity is due to its exceptional success in solving one of 
the most important problem of the experimental chemist, the physical separation of mixtures 
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components rapidly, completely, and rather inexpensively, even when complex compounds are 
involved at either laboratory or at large-scales. 

Models based on advection-diffusion equations are widely used with tremendous suc-
cess for describing such separation processes [1, 2]. Various chromatographic models have 
been developed in the literature to simulate chromatographic processes. The most famous of 
them are the general rate model, various kinetic models, and the equilibrium dispersive model 
(EDM) [3-5]. For linear adsorption isotherm, the analytical solutions of models are widely 
available in [5-10]. 

There is close correlation between the equilibrium isotherm of a solute in a chro-
matographic system and the elution profile of its high concentration bands [5, 11-14]. Various 
systematic investigations have proved good agreement between the experimental band profiles 
and the profiles calculated from the equilibrium isotherms [13, 15, 16]. In all studied cases, the 
isotherms were convex upward. The Langmuir isotherm is also convex upward and has no in-
flexion point. Simple statistical thermodynamics describes that the general form of an isotherm 
equation should be the ratio of two polynomials of the same exponent [13, 14, 17]. 

The analytical solutions for fast equilibrium with axial dispersion and non-linear iso-
therm have been attempted in [18]. The authors have derived approximate results with single 
boundary, no solution being obtained for diffuse rear boundary. Band shapes in non-linear chro-
matography with axial dispersion are also investigated in [19]. Furthermore, to answer the ques-
tion about the peak shape and retention equilibrium, the statistical moments are very useful. In the 
literature, moment analysis approach is widely analyzed by a number of researchers [5, 7, 20-30]. 

The goal of this paper is to analytically solve the single-component EDM utilizing a 
polynomial-type quadratic adsorption isotherm. The inclusion of this quadratic-type isotherm in 
the mass balance equation leads to a non-linear advection-diffusion PDE like a viscus Burger 
equation. It is known that analytical solution of Burger’s equation can be derived by applying a 
method discovered independently by Eberhard Hopf (1950) and Julian Cole (1951). As our EDM 
equation has resemblance to Burger’s equation, both Hopf-Cole and exponential transformations 
are applied one after another to convert the given advection-diffusion EDM to a second order lin-
ear diffusion equation. These transformations are applied under the assumption of small non-lin-
earity, or small volumes of injected concentrations, or both. Afterwards, the Fourier transform 
technique is applied to obtain the analytical solution of the resulting linear diffusion equation. Due 
to the importance of moment analysis, numerical moments are also derived in this work because 
of the non-possibility of analytical moments. Lastly, the HR-FVS is extended to solve the non-lin-
ear isothermal model of liquid chromatography for comparison and validation of our assumptions 
[7, 31]. Several test problems of practical interest are conducted. 

The non-linear equilibrium dispersive model

Consider the combined transport mechanisms of advection and diffusion for a sin-
gle-component solute along with the following basic assumptions: 
–– The chromatographic process is isothermal and the mobile phase is incompressible, which 

holds for the liquid chromatography. 
–– The concentration gradients along the radial axis are neglected and band broadening is due 

to axial dispersion only. 
–– The packing material of stationary phase are porous spherical particles of same size and the 

bed is isotropic and homogeneous. 
–– There is no interaction between the solid (stationary) phase and solvent (mobile) phase. 
–– The flow rate is assumed to be independent of axial dispersion coefficient. 



Ur Rehman, J., et al.: Analysis of Equilibrium Dispersive Model of Liquid ... 
THERMAL SCIENCE: Year 2022, Vol. 26, No. 3A, pp. 2069-2080	 2071

In the case of single-solute EDM, the equation of mass balance for the transport of 
solute in the bulk of fluid is given:

2

2= z
c c c qu D F
t z tz
∂ ∂ ∂ ∂

+ −
∂ ∂ ∂∂

(1)

where c and q are the concentration of the mobile and adsorbed phases, respectively. Further,  
F = (1 – ϵ)/ϵ is the phase ratio in terms of the total porosity ϵ, u – the interstitial velocity,  
Dz – the axial dispersion coefficient, while t and z are the time and axial co-ordinates. 

Moreover, the following dimensionless quantities are introduced to reduce the num-
ber of variables:

= , = , Pe =
z

z ut Lux
L L D

τ (2)

where L is the length of the column, Pe – the Peclet number for the concentration, and τ – the 
mean retention time of non-retained component. On using eq. (2) in eq. (1), we get:

2
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The simplest isotherm model used in adsorption studies is the first order Langmuir 
isotherm [5, 13, 14, 17]: 

( ) =
1

acq c
bc+ (4)

Assuming a fast injection of the sample as a rectangular profile of height cinj and width 
τinj such that the product cinjτinj expresses the sample size. Thus, we have to set the initial condition: 

inj inj, 0 <
( ,0) =

0, otherwise

c x
c x

τ≤



(5)

where the symbols τinj = utinj/L stands for the dimensionless time of injections. The boundary 
conditions for a hypothetically infinite length column are expressed:

(0, ) = 0, ( , ) = 0c t c t∞ (6)

Quadratic isotherm and Hopf-Cole transformation

Assuming small changes in the concentration, we can expand the non-linear Lang-
muir adsorption isotherm around a reference value c0 by applying Taylor expansion up to sec-
ond order: 

0 0

22
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After some manipulations and simplifications, the previous equation simplifies to:
2

1 2 3( ) =q c c cγ γ γ+ + (8)
where 
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The assumed quadratic isotherm has an edge that it is concave to the adsorbed solute 
for positive γ3, while concave to the concentration axis for negative γ3, and becomes linear for  
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γ3 = 0. In order to approximate the highly curved isotherm without the use of higher order poly-
nomial isotherms, the constant γ1, has been used. Using eq. (8) in eq. (3), we get:

2

2
1 1=

(1 ) (1 )Pe
c c cR

c x c xτ λ λ
∂ ∂ ∂

−
∂ + ∂ + ∂

(10)

where R = 1 + γ2F and λ = (2Fγ3)/R. Here, λ is a leaning parameter. Assuming |λc| ≪ 1, and also 
the quadratic and high order powers of λc can be neglected, thus, we get:

1(1 ) 1c cλ λ−+ ≈ − (11)
Moreover, for larger Peclet number (e.g. Pe >= 500), we can assume that λc/Pe ≈ 0. 
After simplification, eq. (10) becomes:
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As a next step, we introduce a well known Hopf-Cole transformation eliminate the 
non-linear advection term from eq. (12). Let us define:

( , )2( , ) =
Pe ( , )

x x
c x

x
ω τ

τ
λ ω τ (13)

After some simplifications, the new dependent variable ω can be expressed:

Pe( , ) = exp ( , )d
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where y is an auxiliary integration variable and c(y, τ) represent axial distribution of solute at τ. 
According to eq. (5), we have to set c(y, 0) = cinjτinjδ(y) with δ(y) being a Dirac pulse 

function. It is defined:
0, < 0

( ) =
1, > 0

y
y

y
δ


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Thus, eq. (14) for τ = 0 becomes:
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Pe( ,0) = exp ( )d
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By incorporating eq. (13) in eq. (12), the non-linear advection-diffusion PDE in eq. (12) 
reduces to the following linear advection-diffusion PDE: 

2
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R
x x

ω ω ω
τ

∂ ∂ ∂
+

∂ ∂ ∂
(17)

Now, we can simplify the aforementioned advection-diffusion equation by introduc-
ing another transformation containing a new dependent variable ϕ(x, τ), that is:

Pe Pe( , ) = ( , ) exp
2 4

xx x
R
τω τ φ τ  − 

 
(18)

The previous transformation converts the linear advection-diffusion in eq. (17) to a 
linear diffusion equation of the form:



2

2
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Pe x

φ φ
τ
∂ ∂
∂ ∂

(19)

where Pe~ = RPe. 
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Analytical solution by Fourier transformation

The Fourier transformation is applied as a primary tool to derive analytical solutions 
of eq. (19). It is defined:

1[ ( , )] = ( , ) = exp( ) ( , )d
2

x k ikx x xφ τ φ τ φ τ
∞

−∞
π ∫ (20)

where ϕ ̄ and ϕ shows the solution profiles in Fourier-transformed and actual-space domains, 
respectively. After applying Fourier transformation on eq. (19) we get:



2( , ) = ( ,0)exp( Pe )k k kφ τ φ τ− (21)
here, ϕ ̄(k, 0) is constant of integration at τ = 0. By taking Fourier inverse of eq. (21) and using 
initial conditions (IC) of eq. (16) we reached:
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where x′ is the auxiliary variable. By using eq. (22) in eq. (18), we get:
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After some algebraic manipulations, we get the following simplified form of afore-
mentioned equation: 
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where ξ = x – τ/R. After inserting the previous equation in eq. (13) and performing some alge-
braic manipulations, we get the following simplified solution in term of the actual concentration 
c(x, τ):
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The integral terms in the aforementioned equation can be simplified by utilizing 
the definition of Dirac step function given in eq. (15) and by introducing a new parameter  
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β = (λPe/2)cinjτinj [32]. After calculating the aforementioned four integrals, we finally obtain the 
analytical solution of the form:

 








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where erf is the error function and erfc is the complementary error function, i.e. ercf(ζ) = 1 – erf(ζ).

Moment analysis

In this section, temporal moments are discussed which are useful for analyzing and 
estimating the behavior of band profiles. Such moments provide overall information about the 
adsorption equilibrium and kinetic data. In the case of quadratic and non-linear isotherms, ana-
lytical expressions of temporal moments are not obtainable. Therefore, numerical moments are 
calculated by numerically integrating their concentration profiles. 

Numerous groups have worked on higher moments of chromatographic peaks in the mid 
nineteens. Kubin [20] and Kučera [21] calculated the moment equations independently. Further-
more, Grushka et al. [33, 34], and Boniface and Ruthven [35] have worked on temporal moments. 

In this study, the first four temporal moments are considered. The zeroth moment 
gives information about peak areas and total mass and the first moment µ′1 corresponds to re-
tention time. The second µ′2, third µ′3, and fourth µ′4 central moments give the information about 
variance (spreading), skewness, and kurtosis of the profiles, respectively. 

The formulas for the numerical temporal moments at the column outlet are given:

0
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∞
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The normalized nth temporal moments are expressed:
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The nth central moment are obtained:
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The aforementioned formula will be used to calculate numerical moments for the 
concentration profiles generated by analytical and FVS solutions. 

Discussion on numerical test problems

This section presents a few case studies to analyze the applicability range of our de-
rived analytical results. In the test problems, regenerated systems, i.e. cinit = 0 mol/l, and pulse 
injections of concentration cinj = 1 mol/l and duration tr,min,j = 2 minutes are considered. The 
analytical solutions are compared with the numerical solutions which are obtained through 
high resolution finite volume scheme of Koren considering either fully non-linear isotherm, c.f.  
eq. (4), or quadratic isotherm, c.f. eqs. (6) and (10), [36]. 

The numerical moments are obtained from the proposed finite volume scheme using 
the moments formulas mentioned previously. The trapezoidal rule is applied to numerically 
approximate the integral terms of these equations. A comparison of linear and quadratic nu-
merical moments for different values of non-linearity coefficients and flow rates are given. The 
parameters used for comparison are listed in tab. 1. 

Table 1. Used parameters in the considered test problems
 Lightgray 
parameters  L a b u ϵ Dz cinit cinj c0 tinj

Lightgray [cm]  [–] [lmol–1] [cmmin–1] [–] [cm2min–1] [molL–1] [molL–1] [molL–1] [min]
Values 10 1.5  0.5  1.2  0.4  0.02  0  1  0.0001  2.0

Figure 1. Effects of non-linearity coefficient on concentration profile,  
where Pe = 600; other parameters are given in tab. 1
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Effect of the non-linearity coefficient b: Figure 1 shows the results for different values 
of non-linearity coefficient, i.e. for b = 0, 0.2, 1, 2. For b = 0 both quadratic and Langmuir iso-
therms become linear, c.f. eqs. (4) and (6), and hence, a good agreement can be seen between 
the analytical and numerical results. While, plots for other values of b show that the results for 
quadratic isotherm start deviating from the results for Langmuir isotherm with the increase in 
the value of non-linearity coefficient b. As the non-linearity coefficient increases, the adsorption 
front of the profile becomes sharper and the desorption fronts becomes tailed. The results ob-
tained endorse the use of quadratic isotherm for moderate values of the non-linearity coefficient.

Figure 2. Effects of different model 
parameters on concentration 
profile at b = 1 l/mol; 
all parameters are given in tab. 1
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Effects of different model parameters: In fig. 2 the effects of different model parame-
ters are shown. Figure 2(a) displays the effect of non-linearity coefficient on the solution pro-
files, and also the analytical and numerical results for quadratic isotherm are compared with 
each other. A good agreement in the results verify the correctness of our analytical solution and 
accuracy of the proposed numerical algorithm. Figure 2(b) demonstrates the effect of Peclet 
number (or axial dispersion coefficient) on the solution profiles. It can be seen that solutions are 
diffusive for small value of the Peclet number (or larger axial dispersion coefficient), while pro-
files are narrower and sharper for large value of the Peclet number (or smaller axial dispersion 
coefficient). Figure 2(c) shows the influence of injection time on the profiles. It can be seen that 
profiles become wider on increasing the injection time or injection volume. In fig. 2(d), the plot 
of concentration profiles for different values of Henry’s constant are displayed. It can be seen 
that for larger value of a, the retention time and spreading of concentration profile increases. 
In fig. 2(e) the various effects of leaning parameter λ are shown. It can be observed that when 
value of λ approaches to zero the shape of peak gets very close to Gaussian distribution and for 
the positive value of λ i.e. 0.5 peak of the profile is left tailed, where as it is right tailed for –0.5.

Effect of the non-linearity coefficient on first four moments: Figure 3 shows the first 
four numerical moments obtained for different values of the non-linearity coefficient b. It can 
be seen that moments for quadratic and Langmuir isotherms deviate from each other for larger 

Figure 3. Temporal moments as functions of non-linearity coefficient b; 
other parameters are given in tab. 1
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values of the non-linearity coefficient. Thus, it is once again verified that our analytical results 
for quadratic isotherm are useful for moderate values of the non-linearity coefficient:

Effects of interstitial velocity on first four moments: Figure 4 gives a comparison of 
first four moments obtained by using quadratic and Langmuir isotherms at different values of 
flow rates u, while keeping the non-linearity confident fixed as b = 0.5 l/mol. It can be seen that 
only third moments, representing asymmetry of the profiles, are deviating from each other:

Conclusion

A single-component liquid chromatography model, based on quadratic isotherm, was 
solved analytically by using Hopf-Cole, exponential, and Fourier transformation techniques. 
To gain confidence on the generated profiles of concentration, the model equations were also 
solved numerically by applying a high resolution finite volume scheme. It was found that a 
better agreement between analytical and numerical solutions occurs up to a sufficiently large 
value of the non-linearity coefficient. Furthermore, to investigate about the effects of transport 
parameters on the elution profiles, numerical temporal moments were obtained. Such moments 
are useful to interpret and understand the behavior of profiles inside the fixed-bed column. This 
study provides a feasible procedure of analyzing the column overloading and to determine the 

Figure 4. Temporal moments as functions of intersticial velocity at fixed b = 0.5 l/mol; 
other parameters are given in tab. 1
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experimental operating conditions which will provide the optimum production rate in prepar-
ative liquid chromatography considering moderate changes in the concentrations. The results 
obtained are very helpful for better understanding of the physicochemical processes involved 
in liquid chromatography. 
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Nomenclature
a 	 – Henry’s constant, [–]	
c0	 – reference concentration, [moll–1]	
cinit	 – initial concentrations [moll–1]
cinj	 – inlet concentrations, [moll–1]	
Dz,j	 – axial Dispersion coefficient, [cm2min–1]
F 	 – phase ratio, [–]

L	 – column length, [cm]
Pe	 – Peclet number, [–]
t	 – time co-ordinate, [min],
u	 – intersticial phase velocity, [cmmin–1]
z	 – axial co-ordinate, [–]
ϵ	 – external porosity, [–]  
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