THERMAL SCIENCE

International Scientific Journal

STOCHASTIC TRANSITION BEHAVIORS IN A TRI-STABLE VAN DER POL OSCILLATOR WITH FRACTIONAL DELAYED ELEMENT SUBJECT TO GAUSSIAN WHITE NOISE

ABSTRACT
The stochastic P-bifurcation behavior of tri stability in a generalized Van der Pol system with fractional derivative under additive Gaussian white noise excitation is investigated. Firstly, based on the minimal mean square error principle, the fractional derivative is found to be equivalent to a linear combination of damping and restoring forces, and the original system is simplified into an equivalent integer order system. Secondly, the stationary probability density function of the system amplitude is obtained by stochastic averaging, and according to the singularity theory, the critical parameters for stochastic P-bifurcation of the system are found. Finally, the nature of stationary probability density function curves of the system amplitude is qualitatively analyzed by choosing the corresponding parameters in each region divided by the transition set curves. The consistency between the analytical solutions and Monte-Carlo simulation results verifies the theoretical results in this paper.
KEYWORDS
PAPER SUBMITTED: 2020-03-08
PAPER REVISED: 2021-10-01
PAPER ACCEPTED: 2021-10-01
PUBLISHED ONLINE: 2022-07-16
DOI REFERENCE: https://doi.org/10.2298/TSCI2203713L
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2022, VOLUME 26, ISSUE Issue 3, PAGES [2713 - 2725]
REFERENCES
  1. Xu, M. Y., Tan, W. C., Representation of the Constitutive Equation of Viscoelastic Materials by the Generalized Fractional Element Networks and Its Generalized Solutions, Sci. China Ser. A, 46 (2003), 2, pp. 145-147
  2. Sabatier, J., et al., Advances in Fractional Calculus, Springer, Amsterdam, The Netherlands, 2007
  3. Podlubny, I., Fractional-Order Systems and P IDcontrollers, IEEE Trans. Autom. Contol., 44 (1999),1, pp. 208-214
  4. Monje, C. A., et al., Fractional-order Systems and Controls: Fundamentals and Applications, Springer-Verlag, London, 2010
  5. Bagley, R. L., Torvik, P. J., Fractional Calculus - A Different Approach to the Analysis of Viscoelastically Damped Structures, AIAA J., 21 (1983), 5, pp. 741-748
  6. Bagley, R. L, Torvik, P. J., Fractional Calculus in the Transient Analysis of Viscoelastically Damped Structures. AIAA J., 23 (1985), 6, pp. 918-925
  7. Machado, J. A. T., And I say to myself: "What a fractional world!", Calc. Appl. Anal., 14 (2011), 4, pp. 635-654
  8. Machado, J. A. T., Fractional Order Modelling of Fractional-Order Holds, Non-linear Dynam., 70 (2012), 1, pp. 789-796
  9. Machado, J. T., Fractional Calculus: Application in Modeling and Control, Springer, New York, USA, 2013
  10. Machado, J. A. T., Costa AC and Quelhas MD, Fractional Dynamics in DNA, Commun. Non-linear Sci., 16 (2011), 8, pp. 2963-2969
  11. Francesco, M., Fractional Relaxation-Oscillation and Fractional Diffusion-Wave Phenomena, Chaos, Soliton andFractals, 7 (1996), 8, pp. 1461-1477
  12. Li, S. H., Huang, Y., Mean First-Passage Time of a Tumor Cell Growth System with Time Delay and Colored Cross-Correlated Noises Excitation, J. Low Freq. Noise Vib. Active Contr., 37 (2018), 2, pp. 191-198
  13. Wang, P., et al., Non-linear Vibration Mechanism for Fabrication of Crimped Nanofibers with Bubble Electrospinning and Stuffer Box Crimping Method, Text. Res. J., 87 (2016), 14, pp. 1-5
  14. Li, X. X., et al., A Fractal Modification of the Surface Coverage Model for An Electrochemical Arsenic Sensor, Electrochim. Acta, 296 (2018), Feb., pp. 491-493
  15. He, J. H., et al., Variational Iteration Method for Bratu-Like Equation Arising in Electrospinning, Carbohyd. Polym., 105 (2014), May, pp. 229-230
  16. Anjum, N., He, J H., Laplace Transform: Making the Variational Iteration Method Easier, Appl. Math. Lett., 92 (2019), June, pp. 134-138
  17. Yu, D. N., et al., Homotopy Perturbation Method with an Auxiliary Parameter for Non-linear Oscillators, J. Low Freq. Noise Vib. Active Control, 38 (2019), 3-4, pp. 1540-1554
  18. Wu, Y., He, J. H., Homotopy Perturbation Method for Non-linear Oscillators with Coordinate-Dependent Mass, Results Phys., 10 (2018), June, pp. 270-271
  19. Wang, Y., An, J. Y., Amplitude-Frequency Relationship to a Fractional Duffing Oscillator Arising in Microphysics and Tsunami Motion, J. Low Freq. Noise Vib. Active Contr., 38 (2018), 3-4 , pp. 1008-1012
  20. Wang, K. L., Wang, K. J., A Modification of the Reduced Differential Transform Method for Fractional Calculus, Thermal Science, 22 (2018), 4, pp. 1871-1875
  21. Wang, K. L., Liu, S. Y., Analytical Study of Time-Fractional Navier-Stokes Equation by Using Transform Methods, Adv. Differ. Equ., 2016 (2016), Feb., 61
  22. Rong HW, Wang XD, Xu W, et al. On Double-Peak Probability Density Functions of a Duffing Oscilla-tor Under Narrow-Band Random Excitations, Applied Math. and Mech., 27 (2006), Nov., pp. 1569-1576
  23. Rong, H. W., et al., On Double Peak Probability Density Functions of Duffing Oscillator to Combined Deterministic and Random Excitations, Appl. Math. Mech-Engl. Ed., 27 (2006), 11, pp. 1569-1576
  24. Xu, Y., et al., Stochastic Bifurcations in a Bistable Duffing-Van der Pol Oscillator with Colored Noise, Phys. Rev. E, 83 (2011), 5, 056215
  25. Wu, Z. Q., Hao, Y., Three-Peak P-Bifurcations in Stochastically Excited Van der Pol-Duffing Oscillator (in Chinese), Sci. Sin. Phys. Mech. Astron., 43 (2013), 43, pp. 524-529
  26. Wu, Z. Q., Hao, Y., Stochastic P-Bifurcations in Tri-Stable Van der Pol-Duffing Oscillator with Multi-plicative Colored Noise (in Chinese), Acta Phys. Sin., 64 (2015), 6, 060501
  27. Hao, Y., Wu, Z. Q., Stochastic P-Bifurcation of Tri-Stable Van der Pol-Duffing Oscillator (in Chinese), Chin. J. Theor. Appl. Mech., 45 (2013), 2, pp. 257-264
  28. Chen, L. C., Zhu, W. Q., Stochastic Jump and Bifurcation of Duffing Oscillator with Fractional Deriva-tive Damping Under Combined Harmonic and White Noise Excitations., Int. J. Nonlin. Mech., 46 (2011), 10, pp. 1324-1329
  29. Li, W., et al., Stochastic Bifurcations of Generalized Duffing-Van der Pol System with Fractional Deriv-ative Under Colored Noise, Chinese Phys. B, 26 (2017), 9, pp. 62-69
  30. Liu, W. Y., et al., Stochastic Stability of Duffing Oscillator with Fractional Derivative Damping Under Combined Harmonic and Poisson White Noise Parametric Excitations, Probabilist Eng. Mech., 53 (2018), June, pp. 109-115
  31. Liu, C. C., et al., Feedback Control for Two-Degree-of-Freedom Vibration System with Fractional-Order Derivative Damping, J. Low Freq. Noise. Vib. Active. Contr., 37 (2018), 3, pp. 554-564
  32. Leung, A. Y. T., et al., Fractional Derivative and Time Delay Damper Characteristics in Duffing-Van der Pol Oscillators, Commun. Non-linear Sci., 18 (2013), 10, pp. 2900-2915
  33. Chen, J. F., et al., Primary Resonance of Van der Pol Oscillator Under Fractional-Order Delayed Feed-back and Forced Excitation, Shock and Vibration, 2017 (2017), ID 5975329
  34. Leung, A. Y. T., et al., Periodic Bifurcation of Duffing-Van der Pol Oscillators Having Fractional De-rivatives and Time Delay, Commun. Non-linear Sci., 19 (2014), 4, pp. 1142-1155
  35. Chen, L. C., et al., Stochastic Averaging Technique for SDOF Strongly Non-linear Systems with De-layed Feedback Fractional-Order PD Controller, Sci. China Technol. Sc., 62 (2019), 2, pp. 287-297
  36. Wen, S. F., et al., Dynamical Analysis of Duffing Oscillator with Fractional-Order Feedback with Time Delay (in Chinese), Acta Phys. Sin., 65 (2016), 9, pp. 158-167
  37. Jiang, W., Wei, J., Bifurcation Analysis in Van der Pol's Oscillator with Delayed Feedback, J. Comput. Appl. Math., 213 (2008), 2, pp. 604-615
  38. Wang, K. L., He, C. H., A Remark on Wang's Fractal Variational Principle, Fractals, 27 (2019), 8, 1950134
  39. Wang, K. L., et al., Physical Insight of Local Fractional Calculus and Its Application to Fractional KdV-Burgers-Kuramoto Equation, Fractals, 27 (2019), 7, 1950122
  40. He, J. H., et al., A Fractal Modification of Chen-Lee-Liu Equation and Its Fractal Variational Principle, International Journal of Modern Physics B, 35 (2021), 21, 2150214
  41. Chen, L. C., et al., Stationary Response of Duffing Oscillator with Hardening Stiffness and Fractional Derivative, Int. J. Nonlin. Mech., 48 (2013), Jan., pp. 44-50
  42. Chen, L. C., et al., First-Passage Failure of Single-Degree-of-Freedom Non-linear Oscillators with Frac-tional Derivative, J. Vib. Control., 19 (2013), 14, pp. 2154-2163
  43. Shen, Y. J., et al., Primary Resonance of Duffing Oscillator with Two Kinds of Fractional-Order Deriva-tives., Int. J. Nonlin. Mech., 47 (2012), 9, pp. 975-983
  44. Yang, Y. G., et al., Stochastic Response of Van der Pol Oscillator with Two Kinds of Fractional Deriva-tives Under Gaussian White Noise Excitation, Chinese Phys. B, 25 (2016), 2, pp. 13-21
  45. Spanos, P. D., Zeldin, B. A., Random Vibration of Systems with Frequency-Dependent Parameters or Fractional Derivatives, J. Eng. Mech., 123 (1997), 3, pp. 290-292
  46. Zhu, W. Q., Random Vibration (in Chinese), Science Press, Beijing, 1992
  47. Ling, F. H., Catastrophe Theory and its Applications (in Chinese), Shanghai: Shang Hai Jiao Tong Uni-versity Press, 1987
  48. Petras, I., Fractional-Order Non-linear Systems: Modeling, Analysis and Simulation, Higher Education Press, Beijing, 2011
  49. He, J.-H., et al., Periodic Property and Instability of a Rotating Pendulum System., Axioms, 10 (2021), 3, 191
  50. He, C. H., et al., Hybrid Rayleigh -Van der Pol-Duffing Oscillator (HRVD): Stability Analysis and Con-troller, Journal of Low Frequency Noise, Vibration & Active Control, 41 (2021), 1, pp. 244-268
  51. He, J. H., et al., Non-linear Instability of Two Streaming-Superposed Magnetic Reiner-Rivlin Fluids by He-Laplace Method, Journal of Electroanalytical Chemistry, 895 (2021), Aug., 115388
  52. Petras, I., Tuning and Implementation Methods for Fractional-Order Controllers, Fract. Calc. Appl. Anal., 15 (2012), 2, pp. 282-303
  53. Assabaa, M., et al., Fractional Order Adaptive Controller for Stabilised Systems via High-Gain Feed-back., Iet. Control. Theory A, 7 (2013), 6, pp. 822-828
  54. Shah, P., Agashe, S., Review of Fractional PID Controller, Mechatronics, 38 (2016), Sept., pp. 29-41
  55. Li, W., et al., Reliability Estimation of Stochastic Dynamical Systems with Fractional Order PID Con-troller, Int. J. Struct. Stab. Dy., 18 (2018), 6, 1850083
  56. Chen, L. C., et al., Bifurcation Control of Bounded Noise Excited Duffing Oscillator by a Weakly Frac-tional-Order Feedback Controller, Non-linear Dynamics, 83 (2016), 1, pp. 529-539
  57. Feng, G. Q., He's Frequency Formula to Fractal Undamped Duffing Equation, Journal of Low Frequen-cy Noise Vibration and Active Control, 40 (2021), 4, pp. 1371-1676

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence