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The stochastic P-bifurcation behavior of tri-stability in a generalized Van der Pol 
system with fractional derivative under additive Gaussian white noise excitation 
is investigated. Firstly, based on the minimal mean square error principle, the 
fractional derivative is found to be equivalent to a linear combination of damping 
and restoring forces, and the original system is simplified into an equivalent inte-
ger order system. Secondly, the stationary probability density function of the sys-
tem amplitude is obtained by stochastic averaging, and according to the singu-
larity theory, the critical parameters for stochastic P-bifurcation of the system 
are found. Finally, the nature of stationary probability density function curves of 
the system amplitude is qualitatively analyzed by choosing the corresponding pa-
rameters in each region divided by the transition set curves. The consistency be-
tween the analytical solutions and Monte-Carlo simulation results verifies the 
theoretical results in this paper. 

Key words: stochastic P-bifurcation, fractional derivative, gaussian white noises, 
transition set curves, Monte-Carlo simulation 

Introduction 

Due to the limitation of the definition of integer-order derivatives, the classical inte-
ger operators cannot express memory properties and do not have sufficient parameters to han-
dle the different shapes of the hysteresis loops describing the behaviors of viscoelastic materi-
als and structures. While fractional derivatives contain convolution, which can describe a 
memory effect and express a cumulative effect over time; hence they are more suitable to de-
scribe memory characteristics [1-4] and have become a powerful mathematical tool to study 
fields such as anomalous diffusion, non-Newtonian fluid mechanics, viscoelastic mechanics, 
and soft matter physics. Compared with integer-order calculus, the fractional derivative can 
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describe various reaction processes more accurately with fewer parameters, [5-11]. Thus, it is 
necessary and significant to investigate the fractional differential equations on the typical me-
chanical properties and the influences of fractional order parameters on the system. 

Recently, many scholars have studied the dynamic behavior of non-linear multi-
stable systems under different noise excitations and achieved fruitful results. Li and Huang 
[12] investigated the mean first-passage time of a delayed tumor cell growth system driven by 
colored cross-correlated noises and then thoroughly discussed the effects of different kinds of 
delays and noise parameters on the mean first passage time. Wang et al. [13] established the 
governing equations for the non-linear transverse vibration of an axially moving viscoelastic 
beam with finite deformation using the Hamiltonian principle and produced nanoscale 
crimped fibers using stuffer box crimping and bubble electrospinning. Li et al. [14] solved a 
paradox in an electrochemical sensor by a fractal modification of the surface coverage model 
and elucidated a simple solution process to the fractal model. He et al. [15] pointed out the so-
called enhanced variational iteration method for a non-linear equation arising in electrospin-
ning and the vibration-electrospinning process is the standard variational iteration method and 
an effective algorithm using the variational iteration algorithm-II is suggested for Bratu-like 
equation arising in electrospinning. Anjum and He [16] suggested an easier approach by the 
Laplace transform to determining the Lagrange multiplier for the variational iteration method, 
making the method accessible to researchers facing various non-linear problems, and adopted 
a non-linear oscillator as an example to elucidate the identification process and the solution 
process. Yu et al. [17] improved the homotopy perturbation method by constructing a ho-
motopy equation with one or more auxiliary parameters embedding in the linear term with a 
clear advantage in accelerating and controlling the approximation convergence speed. Wu and 
He [18] elucidated that the homotopy perturbation method is valid for non-linear oscillators 
with negative linear terms, and conditions for the periodic solutions can be easily obtained. 
Wang and An [19] adopted He’s fractional derivative which is defined through a variational 
iteration algorithm to describe a non-linear vibration in microphysics, and used He’s ampli-
tude-frequency formulation to solve the fractional Duffing equation. Wang and Wang [20] 
modified the reduced differential transform method for obtaining the approximate analytical 
solutions of the fractional heat transfer equations. Wang and Liu [21] suggested a modifica-
tion of the reduced differential transform method and a new iterative Elzaki transform method 
and then applied them to obtain the analytical solutions of the time-fractional Navier-Stokes 
equations. In addition, some researchers investigated the Van der Pol-Duffing oscillators un-
der the Lévy noise, colored noise, combined harmonic and random excitations, respectively. 
Moreover, the stochastic P-bifurcation behaviors of the noise oscillators were discussed by 
analyzing changes in the stationary PDF of the systems [22-24]. Hao and Wu [25-27] investi-
gated the stochastic P-bifurcation of tri-stability in a generalized Duffing-Van der Pol oscilla-
tor system excited by additive Gaussian white noise, multiplicative colored noise, combined 
additive, and multiplicative Gaussian white noises, respectively, obtained an analytical ex-
pression of the stationary probability density function (PDF) of system amplitude, and ana-
lyzed the influences of noise intensity and system parameters on stochastic P-bifurcation of 
the system. Chen and Zhu [28] studied the response of a Duffing system with fractional 
damping under combined white noise and harmonic excitations and showed that variation in 
the order of fractional derivative could cause stochastic P-bifurcation of the system. Li et al. 
[29] investigated the stochastic P-bifurcation behavior of a bistable Van der Pol-Duffing os-
cillator with fractional derivative excited by additive and multiplicative Gaussian colored 
noise excitations and found that changes in the linear damping coefficient, the order of frac-
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tional derivative, and the noise intensity can each lead to stochastic P-bifurcation of the sys-
tem. Liu et al. [30] investigated the stochastic stability of a Duffing oscillator with fractional 
derivative damping under combined harmonic and Poisson white noise parametric excitations 
and analyzed the asymptotic Lyapunov stability with probability one of the original system by 
using the largest Lyapunov exponent. 

For the dynamics of time-delay systems, Liu et al. [31] studied a two-degree-of-
freedom non-linear vibration of a quarter vehicle suspension system by using a feedback con-
trol method considered the fractional-order derivative damping and obtained the asymptotic 
stability conditions of the non-linear system by using the Routh-Hurwitz criterion. Leung 
et al. [32] investigated two Duffing-Van der Pol oscillators that have fractional damping and 
time delay, found periodic solutions using the residue harmonic balance method, and then ac-
curately captured the limit cycle frequency. Chen et al. [33] studied the primary resonance re-
sponse of a Van der Pol system under fractional-order delayed negative feedback and forced 
excitation and obtained an approximate analytical solution based on the averaging method. 
Leung et al. [34] investigated a Van der Pol-Duffing oscillator with both fractional derivative 
and time delay according to the harmonic residue method, then examined the periodic bifurca-
tions using the order of fractional derivative, time delay, and feedback gain as the continua-
tion parameters. Chen et al. [35] proposed a stochastic averaging technique, which can be 
used to study randomly excited strongly non-linear systems with a delayed feedback fraction-
al-order proportional-derivative controller, and obtained stationary PDF of the system. Wen 
et al. [36] studied the deterministic and autonomous Duffing systems with fractional time-
delay coupled feedback and found that fractional time-delay coupled feedback plays the roles 
of both velocity time-delay feedback and displacement time-delay feedback. Jiang et al. [37] 
considered a classical Van der Pol oscillator with general time-delay feedback and found that 
there are the Bogdanov-Takens bifurcation, triple-zero, and Hopf-zero singularities in the sys-
tem by analyzing the distribution of the associated characteristic roots. 

Because of the complexity of fractional derivatives, analyzing them is difficult, and 
the influences of system parameters on vibration characteristics are mostly studied numerical-
ly, which are usually limited to qualitative analysis. It is difficult to find the critical condition 
of parametric influence, which affects the analysis and design of such systems, in part because 
the bistable stochastic P-bifurcation of the fractional delayed feedback system has not been 
reported. Accordingly, we take the non-linear vibration of a generalized Van der Pol oscillator 
excited by both additive and multiplicative Gaussian white noise excitations simultaneously 
as an example and obtain the critical parametric conditions for stochastic P-bifurcation using 
the singularity method. Furthermore, we compare the Monte-Carlo simulation results with the 
analytical solutions obtained by stochastic averaging. Their consistency verifies the theoreti-
cal analysis in this paper. 

Derivation of the equivalent system 

The Riemann-Liouville derivative, Caputo derivative, and two-scale fractal deriva-
tive [38-40] are most commonly used. The initial condition corresponding to Riemann-
Liouville derivative has no physical meaning. However, the initial condition of the system de-
scribed by Caputo derivative has both clear physical meaning and forms the same as in the in-
teger-order differential equation. In this paper, we adopt the Caputo derivative. 

For a given physical system, because the moment when the oscillator begins to vi-
brate is always 0,t   and the Caputo derivative is often used in the following form:  
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where 1 , .m p m m N     
In this paper, we study the generalized Van der Pol oscillator system with fractional 

order time-delay coupled feedback driven by Gaussian white noise excitations: 

 2 4 6 8 2
1 2 3 4 0( ) [ ( ) ( ) ( ) ( )] ( ) ( ) [ ( )] ( )C px t x t x t x t x t x t w x t D x t t                  (2) 

where   represents the linear damping coefficient, 1, 2 , 3, and 4 – the non-linear damp-
ing coefficients of the system, w  – the natural frequency, and t – the time-delay introduced in 
the system. The 0 D [ ( )]C p x t   is the p ( 0 1p  ) order Caputo derivative of ( )x t  with 
respect to t, which is defined by eq. (4). The ( )t is Gaussian white noises, which satisfy: 

 [ ( )] 0E t  ,  [ ( ) ( )] 2 ( )E t t s D s     (3) 

where D denotes the intensity of Gaussian white noises ( ),t respectively, and ( )s is the Di-
rac function.  

The fractional derivative has the contributions of the damping force and restoring 
force, [41-44]. Hence, we introduce the equivalent system: 

2 4 6 8 2
1 2 3 4( ) [ ( ) ( ) ( ) ( ) ( , )] ( ) [ ( , ) ] ( ) ( )x t x t x t x t x t C p x t K p w x t t                  (4) 

where ( , )C p   and ( , )K p   are coefficients of the equivalent damping and restoring forces of 
fractional derivative 0 D [ ( )],C p x t   respectively. 

Applying the equivalent methods mentioned in, [28, 43, 44] the concrete forms of 
( , )C p  and ( , )K p  are: 
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Therefore, the equivalent Van der Pol oscillator associated with the system (5) can 
be rewritten as: 
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The stationary PDF of system amplitude 

In our first example, we examine the system in eq. (6), with linear and non-linear 
damping coefficients 0.2,  1 1.51,  2 2.85,  3 1.693,  4 0.312,   natural frequency

1,w   and time-delay 0.5.   For convenience in discussing parametric influence, the bifur-
cation diagram of system amplitude with the variation of fractional order p is shown in fig. 1 
when 1 2 0.D D   



Li, Y., et al.: Stochastic Transition Behaviors in a Tri-Stable Van der Pol … 
THERMAL SCIENCE: Year 2022, Vol. 26, No. 3B, pp. 2713-2725 2717 

As can be seen from fig. 1, there are two attractors when p changes in [0.19, 0.264): 
equilibrium and the large limit cycle. There are three attractors when p changes in [0.264, 
0.267): equilibrium, the small limit cycle, and the large limit cycle. There are also two attrac-
tors when p changes in [0.267, 0.278): equilibrium and the small limit cycle. 

For the system with linear and non-linear damping coefficients 0.2,  1 1.51, 

2 2.85,  3 1.693,    4 0.312,   natural frequency 1,w   and the fractional-order
0.2,p   the bifurcation diagram of system amplitude with the variation of time-delay is 

shown in fig. 2 when 1 2 0.D D   
As can be seen from fig. 2, it shows that there are two attractors where

0.377 0.395:p   the small limit cycle and equilibrium. There exists three attractors where
0.395 0.40:p   equilibrium, the small and the large limit cycles. There are also two attrac-
tors where 0.40 0.516:p   equilibrium and the large limit cycle. 

  
Figure 1. Bifurcation diagram of the deterministic 
system (with variation in p) 

Figure 2. Bifurcation diagram of the 
deterministic system (with variation in τ) 

Assuming that the solution of system (6) has the periodic form, and we introduce the 
following transformation [45]: 

 0

0

( ) ( )cos ( )
( ) ( ) sin ( )

( ) ( )
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Y x t a t w t

t w t t
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where 0w  is the natural frequency of the equivalent system (6), ( )a t and ( )t – the amplitude 
and phase processes of system response, respectively, and they are both random processes. 

Substituting eq. (8) into eq. (6), we can obtain: 

11 11
d ( , ) G ( , ) ( )
d
a

F a a t
t

     

 21 21
d ( , ) ( , ) ( )
d

F a G a t
t


     (9) 

where 
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Equation (9) can be treated as the Stratonovich differential equation, and by adding 
the relevant correction term, we can transform it into the corresponding Ito stochastic differ-
ential equation: 

11 12 11d [ ( , ) ( , )]d 2 G ( , )d ( )a F a F a t D a B t      

 21 22 21d [ ( , ) ( , )]d 2 ( , )d ( )F a F a t DG a B t       (11) 

where ( )B t is the normalized Wiener processes, in addition: 
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By stochastic averaging of averaging eq. (11) over  , [46] we can obtain the fol-
lowing averaged Ito equations:  

1 11d ( )d ( )d ( )a m a t a B t   

 2 21d ( )d ( )d ( )m a t a B t    (13)  

where ( )B t is a unit Wiener process and: 
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Equations (13) and (14) show that the averaged Ito equation of ( )a t is independent 
of ( )t , and the process ( )a t is actually a 1-D diffusion process. Then the reduced Fokker- 
-Planck-Kolmogorov (FPK) equation of ( )a t can be written: 
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2
1 112

10 [ ( ) ( )] [ ( )] ( )
2

m a p a a p a
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The boundary conditions satisfy: 

( ) , ( , ), as 0p a c c a      
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0
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Based on the boundary conditions (16), the stationary PDF of system amplitude a

can be obtained: 
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where C is the normalization constant that satisfies: 
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Substituting eq. (14) into eq. (17), the explicit expression of stationary PDF of sys-
tem amplitude, a, can be described: 

 
2 2 2
0 0( ) exp

7680
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 (19)  

where 
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1 2 3 4
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Stochastic P-bifurcation of system amplitude 

Stochastic P-bifurcation means that the changes in the number of peaks in the PDF 
curve. To obtain the critical parametric conditions for stochastic P-bifurcation, we analyze the 
parametric influences on stochastic P-bifurcation of the system by using the singularity theory 
in this section. 

For convenience, ( )p a can be expressed: 

 1 1 2 3 4 1 1 2 3 4( ) ( , , , , , , , , )exp[ ( , , , , , , , , )]p a CR a D w p Q a D w p           (21) 

where 
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Based on the singularity theory, [47] the stationary PDF of system amplitude needs 
to meet the following two conditions: 

 ( ) 0,p a

a
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2
( ) 0p a
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 (23) 

Substituting eq. (21) into eq. (23), we can obtain the following condition [26, 29]: 

  20, 2 0H R RQ R R Q RQ RQ              (24) 

where H is the condition for the changes in the number of peaks in the PDF curve. 
Since the relationship of the 3-D surface is not easy to describe and display, here, we 

only give the 2-D section of the transition set to represent the influences of the fractional-
order p, the time delay t, and the noise intensities D below. 

Substituting eq. (22) into eq. (24), we can get the critical parametric conditions for 
stochastic P-bifurcation of the system with respect to fractional order p and noise intensity D: 

 2 4 2 6 2 8 2 10
1 0 2 0 3 0 4 0

1 1 15 7
4 4 64 32

D w a w a w a w a        (25) 

where amplitude a satisfies: 

 2 4 6 8 1
1 2 3 4

π128 64 48 40 35 128 sin 0
2

p p
a a a a w

w
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The influence of the fractional-order, , and 

the noise intensity, D , on the system 

With parameters ε = 0,2 α1 = 1.51, α2 = 
2.85, α3 = 1.693, α4 = 0.312, w = 1, p = 0.2, and 
calculate the corresponding transition sets ac-
cording to eqs. (28) and (29), we obtain the crit-
ical conditions for stochastic P-bifurcation of 
the system with unfolding parameters p and D 
shown in fig. 3. 

Based on singularity theory, types of the 
stationary PDF curves of system amplitude at 
different points ( , )D  in the same region are 
qualitatively identical. By taking one point 
( , )D  in each region, we can obtain all varie-

 
Figure 3. Transition set curves of the system (5) 
(taking p and D as the unfolding parameters) 
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ties of stationary PDF curves that are qualitatively different. The unfolding parametric plane 
D   is divided into five sub-regions by the transition set curve. For the sake of conven-

ience, each region in fig. 3 is marked with a number. 
Without loss of generality, we analyze the stationary PDF of amplitude ( )p a only for 

one point ( , )D  in each of the five sub-regions in fig. 3, and then compare the analytical so-
lutions with the Monte Carlo simulation results from the original system (5) using the numeri-
cal method for fractional derivative, [36, 48] and show the corresponding results in fig. 4. 

 

 

Figure 4. The PDF for p(a) in different sub-regions 
in fig. 3 (taking τ and D as unfolding parameters); 

(a) parameter (τ, D) in region 1 in fig. 3,  
(b) parameter (τ, D) in region 2 in fig. 3,  
(c) parameter (τ, D) in region 3 in fig. 3,  

(d) parameter (τ, D) in region 4 in fig. 3, and  
(e) parameter (τ, D) in region 5 in fig. 3 

 
As can be seen from fig. 3, the parameter region where the PDF curve appears mul-

timodal is surrounded by two approximately triangular regions. Particularly, region 4, where 
the two triangular regions are coincident, forms a tri-modal region of the stationary PDF curve 
for the system. When the parameter (τ, D) is taken in region 1, the PDF curve has a distinct 
peak far away from the origin, as shown in fig. 4(a). In region 2, the PDF curve has two dis-
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tinct peaks farther away from the origin, there are both small and large limit cycles in the sys-
tem, as shown in fig. 4(b). In region 3, the PDF curve still has a distinct peak farther away 
from the origin, but the probability is obviously not zero near the origin, there are both the 
equilibrium and large limit cycle in the system simultaneously, as shown in fig. 4(c). In region 
4, the PDF curve has three peaks, it shows that the equilibrium coexists with the small and 
large limit cycles in the system which is tri-stable, as shown in fig. 4(d). In region 5, the am-
plitude corresponding to the peak deviating from the origin of the PDF curve is smaller than 
the corresponding amplitude in fig. 4(c), there exists both the equilibrium and small limit cy-
cle in the system simultaneously, as shown in fig. 4(e). 

According to all of the mentioned, the results show that the stationary PDF for ( )p a
in any two adjacent regions in fig. 3 are qualitatively different. No matter the exact values of 
the unfolding parameters that cross any curve in these figures, the system will occur stochastic 
P-bifurcation behavior. Thus, the transition set curves obtained are just the critical parametric 
conditions for stochastic P-bifurcation of the system. The analytic solutions shown in figure 4 
are well consistent with the Monte-Carlo simulation results from the original system (5), thus 
further verifying the theoretical analysis in this paper. 

Compared with integer-order controllers [49-51], the fractional-order controllers 
have better dynamic performances and robustness, and recently, various fractional-order con-
trollers have been developed [52-57]. And we obtained the critical conditions when the sys-
tem (5) will exhibit stochastic P-bifurcation through the above analysis, which can make the 
system switch between mono-stable and multi-stable states by selecting the corresponding un-
folding parameters, this can provide theoretical guidance for the design of fractional-order 
controllers. 

Conclusion 

In this paper, we studied the bistable stochastic P-bifurcation of a generalized Van 
der Pol system with fractional time-delay feedback excited by additive and multiplicative 
Gaussian white noise excitations simultaneously and discussed the influences of parameters p, 
t, and D on the system. Based on the minimum mean square error principle, the original sys-
tem was transformed into an equivalent integer-order system, and we obtained the stationary 
PDF of system amplitude using the stochastic averaging method. Then, the critical parametric 
conditions for stochastic P-bifurcation of the system were obtained based on singularity theo-
ry, according to which we can maintain the system response at a small amplitude near the 
equilibrium or monostability by selecting the corresponding unfolding parameters, which can 
provide the theoretical guidance for the design of such systems and avoid the damage and in-
stability caused by the non-linear jump or large amplitude vibration of the system. The con-
sistency between the Monte-Carlo simulation results and the analytical solutions can also ver-
ify the theoretical analysis. It shows that the fractional-order, p, time-delay, t, and noise inten-
sities, D, can each arouse stochastic P-bifurcation of the system, and the number of peaks in 
the stationary PDF curves of system amplitude can be controlled from three to one by select-
ing the corresponding unfolding parameters. It also illustrates that the method used in this pa-
per is feasible to analyze the stochastic P-bifurcation behaviors of non-linear oscillators with 
fractional derivatives. 
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