THERMAL SCIENCE
International Scientific Journal
VARIATIONAL PRINCIPLE FOR ONE-DIMENSIONAL INVISCID FLOW
ABSTRACT
A family of variational principles is obtained for the 1-D inviscid flow by Ji-Huan He's semi-inverse method. The invalidy of the Lagrange multiplier method, e. g., the Lagrange crisis, is also discussed to eliminate constraints of a constrained variational principle. Two approaches to the elimination of the crisis are elucidated.
KEYWORDS
PAPER SUBMITTED: 2020-03-03
PAPER REVISED: 2021-10-01
PAPER ACCEPTED: 2021-10-01
PUBLISHED ONLINE: 2022-07-16
THERMAL SCIENCE YEAR
2022, VOLUME
26, ISSUE
Issue 3, PAGES [2465 - 2469]
- He, J. H., A Fractal Variational Theory for One-Dimensional Compressible Flow in a Microgravity Space, Fractals, 28 (2020), 2, 2050024
- Wang, K. L., Yao, S. W., Fractal Variational Theory for Chaplygin-He Gas in a Microgravity Condition, J. Appl. Comput. Mech., 7 (2021), 1, pp. 182-188
- Chaplygin, S., On Gas Jets, Sci. Mem. Moscow Univ. Math. Phys., 1904, Vol. 21, pp. 1-121
- Lukovskii, I. A., Timokha, A. N., Bateman Variational Principle for a Class of Problems of Dynamics and Stability of Surface Waves, Ukrainian Mathematical Journal, 43 (1991), 3, pp. 1106-1110
- He, J. H., Hybrid Problems of Determining Unknown Shape of Bladings in Compressible S2-Flow in Mixed-Flow Turbomachinery via Variational Technique, Aircraft Engineering and Aerospace Technol-ogy, 71 (1999), 2, pp. 154-159
- He, J. H., Inverse Problems Of Determining The Unknown Shape Of Oscillating Airfoils In Compressi-ble 2D Unsteady Flow Via Variational Technique, Aircraft Engineering and Aerospace Technology, 72 (2000), 1, pp. 18-24
- Wang, K. L., He, C. H., A Remark on Wang's Fractal Variational Principle, Fractals, 27 (2019), 8, 1950134
- Wang, K. L., et al., Physical Insight of Local Fractional Calculus and its Application to Fractional KdV Burgers Kuramoto Equation, Fractals, 27 (2019), 7, 1950122
- He, J. H., Hamilton's Principle for Dynamical Elasticity, Appl. Math. Lett., 72 (2017), Oct., pp. 65-69
- Li, Y., He, C. H. A Short Remark on Kalaawy's Variational Principle for Plasma, Int. J. Numer. Method H., 27 (2017), 10, pp. 2203-2206
- He, J. H., Variational Principles for Some Non-linear Partial Differential Equations with Variable Coef-ficients, Chaos Soliton. Fract., 19 (2004), 4, pp. 847-851
- He, J. H., et al., A Fractal Modification of Chen-Lee-Liu Equation and its Fractal Variational Principle, International Journal of Modern Physics B, 35 (2021), 21, 2150214
- Wang, K. J., Generalized Variational Principle and Periodic Wave Solution to the Modified Equal width-Burgers Equation in Non-linear Dispersion Media, Physics Letters A, 419 (2021), Dec., 127723
- He, J. H., et al., Variational Approach to Fractal Solitary Waves, Fractals, 29 (2021), 7, 2150199
- Liu, X. Y., et al., Optimization of a Fractal Electrode-Level Charge Transport Model, Thermal Science, 25 (2021), 3, pp. 2213-2220
- Liu, Y. P., et al., A Fractal Langmuir Kinetic Equation and its Solution Structure, Thermal Science , 25 (2021), 2, pp. 1351-1354
- Liu, X. Y., et al., Computer Simulation of Pantograph Delay Differential Equation, Thermal Science, 25 (2021), 2, pp. 1381-1385
- He, J. H., et al., On a Strong Minimum Condition of a Fractal Variational Principle, Applied Mathemat-ics Letters, 119 (2021), Sept., 107199
- Tian, Y., Liu, J., Direct Algebraic Method for Solving Fractional Fokas Equation, Thermal Science, 25 (2021), 3, pp. 2235-2244
- Wang, K. J., et al., Investigation of the Periodic Solution of the Time-Space Fractional Sasa-Satsuma Equation Arising in the Monomode Optical Fibers, Vol. 137, No. 6, March 2022, doi.org/ 10.1209/0295-5075/ac2a62.
- Han, C., et al., Numerical Solutions of Space Fractional Variable-Coefficient KdV-Modified KdV Equa-tion by Fourier Spectral Method, Fractals, 29 (2021), 8, 21502467